Snake venom toxins are responsible for causing severe pathology and toxicity following envenomation including necrosis, apoptosis, neurotoxicity, myotoxicity, cardiotoxicity, profuse hemorrhage, and disruption of blood homeostasis. Clinically, snake venom toxins therefore represent a significant hazard to snakebite victims which underscores the need to produce more efficient anti-venom. Some snake venom toxins, however, have great potential as drugs for treating human diseases.
View Article and Find Full Text PDFRattlesnake venom can differ in composition and in metalloproteinase-associated activities. The molecular basis for this intra-species variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) remains an enigma. To understand the molecular basis for intra-species variation of metalloproteinase-associated activities, we modeled the three-dimensional structures of four metalloproteinases based on the amino acid sequence of four variations of the proteinase domain of the C.
View Article and Find Full Text PDFThe metalloproteinase composition and biochemical profiles of rattlesnake venom can be highly variable among rattlesnakes of the same species. We have previously shown that the neurotoxic properties of the Mojave rattlesnake (Crotalus scutulatus scutulatus) are associated with the presence of the Mojave toxin A subunit suggesting the existence of a genetic basis for rattlesnake venom composition. In this report, we hypothesized the existence of a genetic basis for intraspecies variation in metalloproteinase-associated biochemical properties of rattlesnake venom of the Mojave rattlesnake.
View Article and Find Full Text PDFComplement inactivating properties were detected in venom from the southern California distribution of Crotalus oreganus helleri (Southern Pacific Rattlesnake). This activity showed strong geographic bias to the San Bernardino Mountain range, and venom from this area reacted strongly with Fraction 5 antiserum (AF5). However, venoms from the San Jacinto Mountain range, which have been previously shown to contain Mojave toxin, did not inhibit complement and did not react with AF5.
View Article and Find Full Text PDFMojave toxin (MT) was detected in five of 25 Crotalus helleri (Southern Pacific rattlesnake) sampled using anti-MT antibodies and nucleotide sequence analysis. All of the venoms that were positive for MT were collected from Mt San Jacinto in Riverside Co., California.
View Article and Find Full Text PDF