Publications by authors named "Epolia Ramadan"

Linoleic acid (LA, 18:2n-6) is a precursor to arachidonic acid (AA, 20:4n-6), which can be converted by brain lipoxygenase and cyclooxygenase (COX) enzymes into various lipid mediators involved in the regulation of brain immunity. Brain AA metabolism is activated in rodents by the bacterial endotoxin, lipopolysaccharide (LPS). This study tested the hypothesis that dietary LA lowering, which limits plasma supply of AA to the brain, reduces LPS-induced upregulation in brain AA metabolism.

View Article and Find Full Text PDF

This article has been retracted by the Editors in Chief at the request of the author Stanley I Rapoport following the finding of the National Institutes of Health that Dr Mireille Basselin engaged in research misconduct by fabricating data in Figure 4A–C and Figure 5B. None of the other authors are implicated in any way.

View Article and Find Full Text PDF

Background: The polyunsaturated fatty acid, docosahexaenoic acid (DHA), participates in neurotransmission involving activation of calcium-independent phospholipase A2 (iPLA2), which is coupled to muscarinic, cholinergic and serotonergic neuroreceptors. Drug induced activation of iPLA2 can be measured in vivo with quantitative autoradiography using 14C-DHA as a probe. The present study used this approach to address whether a DHA signal is produced following dompaminergic (D)2-like receptor activation with quinpirole in rat brain.

View Article and Find Full Text PDF

Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.

View Article and Find Full Text PDF

Background: In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2) enzymes that regulate arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-6) acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks.

View Article and Find Full Text PDF

Disturbed lipid metabolism has been reported in antiretroviral-naive HIV-1-infected patients suggesting a direct effect of the virus on lipid metabolism. To test that the HIV-1 virus alone could alter lipid concentrations, we measured these concentrations in an HIV-1 transgenic (Tg) rat model of human HIV-1 infection, which demonstrates peripheral and central pathology by 7-9 months of age. Concentrations were measured in high-energy microwaved heart, brain and liver from 7-9 month-old HIV-1 Tg and wildtype rats, and in plasma from non-microwaved rats.

View Article and Find Full Text PDF

In rats, FDA-approved mood stabilizers used for treating bipolar disorder (BD) selectively downregulate brain markers of the arachidonic acid (AA) cascade, which are upregulated in postmortem BD brain. Phase III clinical trials show that the anticonvulsant gabapentin (GBP) is ineffective in treating BD. We hypothesized that GBP would not alter the rat brain AA cascade.

View Article and Find Full Text PDF

HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks.

View Article and Find Full Text PDF

Background: Dopamine transporter (DAT) homozygous knockout (DAT(-/-)) mice have a 10-fold higher extracellular (DA) concentration in the caudate-putamen and nucleus accumbens than do wildtype (DAT(+/+)) mice, but show reduced presynaptic DA synthesis and fewer postsynaptic D(2) receptors. One aspect of neurotransmission involves DA binding to postsynaptic D(2)-like receptors coupled to cytosolic phospholipase A(2) (cPLA(2)), which releases the second messenger, arachidonic acid (AA), from synaptic membrane phospholipid. We hypothesized that tonic overactivation of D(2)-like receptors in DAT(-/-) mice due to the excess DA would not increase brain AA signaling, because of compensatory downregulation of postsynaptic DA signaling mechanisms.

View Article and Find Full Text PDF

The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission.

View Article and Find Full Text PDF

Background And Objective: Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D(2)-like (D(2), D(3), and D(4)) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce D(2)-like-mediated signaling via AA.

View Article and Find Full Text PDF

An up-regulated brain arachidonic acid (AA) cascade and a hyperglutamatergic state characterize bipolar disorder (BD). Lamotrigine (LTG), a mood stabilizer approved for treating BD, is reported to interfere with glutamatergic neurotransmission involving N-methyl-d-aspartate receptors (NMDARs). NMDARs allow extracellular calcium into the cell, thereby stimulating calcium-dependent cytosolic phospholipase A2 (cPLA2) to release AA from membrane phospholipid.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is critical for maintaining normal brain structure and function, and is considered neuroprotective. Its brain concentration depends on dietary DHA content and hepatic conversion from its dietary derived n-3 precursor, α-linolenic acid (α-LNA). We have developed an in vivo method in rats using quantitative autoradiography and intravenously injected radiolabeled DHA to image net incorporation into the brain of unesterified plasma DHA, and showed with this method that the incorporation rate of DHA equals the rate of brain metabolic DHA consumption.

View Article and Find Full Text PDF

Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain.

View Article and Find Full Text PDF

Ca(2+)-independent phospholipase A(2)β (iPLA(2)β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA(2)β-deficient mice without overt neuropathology.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV)-associated infection involves the entry of virus-bearing monocytes into the brain, followed by microglial activation, neuroinflammation, and upregulated arachidonic acid (AA) metabolism. The HIV-1 transgenic (Tg) rat, a noninfectious HIV-1 model, shows neurologic and behavioral abnormalities after 5 months of age. We hypothesized that brain AA metabolism would be elevated in older HIV-1 Tg rats in vivo.

View Article and Find Full Text PDF

In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca(2+)-independent phospholipase A(2) (iPLA(2)), Ca(2+)-independent plasmalogen PLA(2) or secretory PLA(2 (sPLA2)), but not by Ca(2+)-dependent cytosolic PLA(2) (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca(2+) into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca(2+)-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.

View Article and Find Full Text PDF

The peptide neurotransmitter N-acetylaspartylglutamate is inactivated by extracellular peptidase activity following synaptic release. It is speculated that the enzyme, glutamate carboxypeptidase II (GCPII, EC 3.14.

View Article and Find Full Text PDF

Deletion of the beta3 subunit of the GABA(A) receptor produces severe behavioral deficits and epilepsy. GABA(A) receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) in cortical neurons in cultures from beta3 -/- mice were significantly faster than those in beta3 +/+ mice and were more prolonged by zolpidem. Surface staining revealed that the number of beta2/3, alpha2, and alpha3 (but not of alpha1) subunit-expressing neurons and the intensity of subunit clusters were significantly reduced in beta3 -/- mice.

View Article and Find Full Text PDF