Publications by authors named "Ephraem Tan"

Catalytic NH synthesis and decomposition offer a new promising way to store and transport renewable energy in the form of NH from remote or offshore sites to industrial plants. To use NH as a hydrogen carrier, it is important to understand the catalytic functionality of NH decomposition reactions at an atomic level. Here, we report for the first time that Ru species confined in a 13X zeolite cavity display the highest specific catalytic activity of over 4000 h for the NH decomposition with a lower activation barrier, compared to most reported catalytic materials in the literature.

View Article and Find Full Text PDF

The viability of using ammonia as a hydrogen storage vector is contingent on the development of catalytic systems active for ammonia decomposition at low temperatures. Zeolite-supported metal catalysts, unlike systems based on supports like MgO or carbon nanotubes (CNTs), are crystalline and lend themselves to analytic techniques like synchrotron X-ray powder diffraction (SXRD) and Rietveld refinement, allowing precise characterisation of catalytic active sites, and therefore mechanistic elucidation. This study focuses on characterising and optimising novel zeolite-supported Ru catalysts for ammonia decomposition, with a focus on the effects of N-substitution on catalyst structure and activity.

View Article and Find Full Text PDF