Publications by authors named "Ephifania Geza"

Over the past decade, studies of admixed populations have increasingly gained interest in both medical and population genetics. These studies have so far shed light on the patterns of genetic variation throughout modern human evolution and have improved our understanding of the demographics and adaptive processes of human populations. To date, there exist about 20 methods or tools to deconvolve local ancestry.

View Article and Find Full Text PDF

Background: Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration.

View Article and Find Full Text PDF

Motivation: Recent technological advances in high-throughput sequencing and genotyping have facilitated an improved understanding of genomic structure and disease-associated genetic factors. In this context, simulation models can play a critical role in revealing various evolutionary and demographic effects on genomic variation, enabling researchers to assess existing and design novel analytical approaches. Although various simulation frameworks have been suggested, they do not account for natural selection in admixture processes.

View Article and Find Full Text PDF