Publications by authors named "Epel B"

Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.

View Article and Find Full Text PDF

Background And Objective: Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the model is usually large-scale and non-smooth. This work aims to devise a simple and convergent solver for optimization model.

View Article and Find Full Text PDF

Purpose: Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions.

View Article and Find Full Text PDF

We report the development of a high-sensitivity and high-resolution PET subsystem for a next-generation preclinical PET/EPR hybrid scanner for investigating and improving hypoxia imaging with PET. The PET subsystem consists of 14 detector modules (DM) installed within a cylindrical supporting frame whose outer and inner diameters are 115mm and 60mm, respectively. Each DM contains eight detector units (DU) in a row and each DU is made of a 12×12 array of 1×1×10mm LYSO crystals (with a 1.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) imaging is an advanced in vivo oxygen imaging modality. The main drawback of EPR imaging is the long scanning time. Sparse-view projections collection is an effective fast scanning pattern.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving continuous-wave electron paramagnetic resonance imaging (CW EPRI) by developing algorithms that reconstruct high-quality four-dimensional spectral-spatial (4DSS) images from sparsely sampled data, rather than the usual densely sampled views.* -
  • Traditional reconstruction methods like filtered-backprojection (FBP) require a lot of scan time, prompting the need for faster data collection methods that still achieve accurate imaging results.* -
  • Through numerical tests with both simulated and actual data, the new optimization-based algorithms demonstrated significant improvements in image quality and physical-parameter estimation, making them a promising alternative for quicker CW EPRI scanning.*
View Article and Find Full Text PDF

Precise radiation guided by oxygen images has demonstrated superiority over the traditional radiation methods. Electron paramagnetic resonance (EPR) imaging has proven to be the most advanced oxygen imaging modality. However, the main drawback of EPR imaging is the long scan time.

View Article and Find Full Text PDF

Purpose: The determination of blood-brain barrier (BBB) integrity and partial pressure of oxygen (pO) in the brain is of substantial interest in several neurological applications. This study aimed to assess the feasibility of using trityl OX071-based pulse electron paramagnetic resonance imaging (pEPRI) to provide a quantitative estimate of BBB integrity and pO maps in mouse brains as a function of neuroinflammatory disease progression.

Methods: Five Connexin-32 (Cx32)-knockout (KO) mice were injected with lipopolysaccharide to induce neuroinflammation for imaging.

View Article and Find Full Text PDF

Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel.

View Article and Find Full Text PDF

Recent advances in our understanding of hypoxia and hypoxia-mediated mechanisms shed light on the critical implications of the hypoxic stress on cellular behavior. However, tools emulating hypoxic conditions (, low oxygen tensions) for research are limited and often suffer from major shortcomings, such as lack of reliability and off-target effects, and they usually fail to recapitulate the complexity of the tissue microenvironment. Fortunately, the field of biomaterials is constantly evolving and has a central role to play in the development of new technologies for conducting hypoxia-related research in several aspects of biomedical research, including tissue engineering, cancer modeling, and modern drug screening.

View Article and Find Full Text PDF

We report the design and experimental validation of a compact positron emission tomography (PET) detector module (DM) intended for building a preclinical PET and electron-paramagnetic-resonance-imaging hybrid system that supports sub-millimeter image resolution and high-sensitivity, whole-body animal imaging. The DM is eight detector units (DU) in a row. Each DU contains 12×12 lutetium-yttrium oxyorthosilicate (LYSO) crystals having a 1.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a biocompatible oximetric electron paramagnetic resonance (EPR) spin probe with reduced self-relaxation, and sensitivity to oxygen for a higher signal-to-noise ratio and longer relaxation times at high oxygen concentration, compared to the reference spin probe OX071.

Procedures: SOX71 was synthesized by succinylation of the twelve alcohol groups of OX071 spin probe and characterized by EPR at X-Band (9.5 GHz) and at low field (720 MHz).

View Article and Find Full Text PDF

Background: Clinical attempts to find benefit from specifically targeting and boosting resistant hypoxic tumor subvolumes have been promising but inconclusive. While a first preclinical murine tumor type showed significant improved control with hypoxic tumor boosts, a more thorough investigation of efficacy from boosting hypoxic subvolumes defined by electron paramagnetic resonance oxygen imaging (EPROI) is necessary. The present study confirms improved hypoxic tumor control results in three different tumor types using a clonogenic assay and explores potential confounding experimental conditions.

View Article and Find Full Text PDF

Purpose: Progress toward developing a novel radiocontrast agent for determining pO in tumors in a clinical setting is described. The imaging agent is designed for use with electron paramagnetic resonance imaging (EPRI), in which the collision of a paramagnetic probe molecule with molecular oxygen causes a spectroscopic change which can be calibrated to give the real oxygen concentration in the tumor tissue.

Procedures: The imaging agent is based on a nanoscaffold of aluminum hydroxide (boehmite) with sizes from 100 to 200 nm, paramagnetic probe molecule, and encapsulation with a gas permeable, thin (10-20 nm) polymer layer to separate the imaging agent and body environment while still allowing O to interact with the paramagnetic probe.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor hypoxia significantly reduces the effectiveness of radiation therapy, with areas of low oxygen being three times less responsive to treatment than areas with normal oxygen levels.
  • This study employed a specialized imaging technique called electron paramagnetic resonance oxygen-imager (EPROI) to measure tumor oxygen levels in two mouse tumor models, revealing that the sarcoma model more accurately reflects human tumors.
  • Results showed that the high levels of hypoxia in sarcomas make them more resistant to radiation, and treatment with the mitochondrial inhibitor papaverine did not enhance radiosensitivity in either tumor model.*
View Article and Find Full Text PDF

Purpose: Spatial heterogeneity in tumor hypoxia is one of the most important factors regulating tumor growth, development, aggressiveness, metastasis, and affecting treatment outcome. Most solid tumors are known to have hypoxia or low oxygen levels (pO ≤10 torr). Electron paramagnetic resonance oxygen imaging (EPROI) is an emerging oxygen mapping technology.

View Article and Find Full Text PDF

Background And Objective: Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the optimization model is usually large-scale and non-smooth. This work aims to devise a simple but universal solver for optimization models.

View Article and Find Full Text PDF

Objective: We investigate and develop optimization-based algorithms for accurate reconstruction of four-dimensional (4D)-spectral-spatial (SS) images directly from data collected over limited angular ranges (LARs) in continuous-wave (CW) electron paramagnetic resonance imaging (EPRI).

Methods: Basing on a discrete-to-discrete data model devised in CW EPRI employing the Zeeman-modulation (ZM) scheme for data acquisition, we first formulate the image reconstruction problem as a convex, constrained optimization program that includes a data fidelity term and also constraints on the individual directional total variations (DTVs) of the 4D-SS image. Subsequently, we develop a primal-dual-based DTV algorithm, simply referred to as the DTV algorithm, to solve the constrained optimization program for achieving image reconstruction from data collected in LAR scans in CW-ZM EPRI.

View Article and Find Full Text PDF

Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) imaging is an advanced oxygen imaging modality for oxygen-image guided radiation. The iterative reconstruction algorithm is the research hot-point in image reconstruction for EPR imaging (EPRI) for this type of algorithm may incorporate image-prior information to construct advanced optimization model to achieve accurate reconstruction from sparse-view projections and/or noisy projections. However, the system matrix in the iterative algorithm needs complicated calculation and needs huge memory-space if it is stored in memory.

View Article and Find Full Text PDF

Purpose: To identify the optimal threshold in F-fluoromisonidazole (FMISO) PET images to accurately locate tumor hypoxia by using electron paramagnetic resonance imaging (pO EPRI) as ground truth for hypoxia, defined by pO [Formula: see text] 10 mmHg.

Methods: Tumor hypoxia images in mouse models of SCCVII squamous cell carcinoma (n = 16) were acquired in a hybrid PET/EPRI imaging system 2 h post-injection of FMISO. T2-weighted MRI was used to delineate tumor and muscle tissue.

View Article and Find Full Text PDF

The purpose of this study was to assess the natural partial oxygen pressure (pO) of subcutaneous (SC) and intraperitoneal (IP) sites in mice to determine their relative suitability as sites for placement of implants. The pO measurements were performed using oxygen imaging of solid probes using lithium phthalocyanine (LiPc) as the oxygen sensitive material. LiPc is a water-insoluble crystalline probe whose spin-lattice and spin-spin relaxation rates ( and ) are sensitive to the local oxygen concentration.

View Article and Find Full Text PDF

One of the major drawbacks associated with autologous fat grafting is unpredictable graft retention. Various efforts to improve the survivability of these cells have been explored, but these methods are time-consuming, complex, and demand significant technical skill. In our study, we examine the use of cryopreserved amniotic membrane as a source of exogenous growth factors to improve adipocyte survivability under normal and hypoxic conditions.

View Article and Find Full Text PDF