Publications by authors named "Eon D"

Due to its capacity to achieve nanometre-scale machining and lithography, a focused ion beam (FIB) is an extended tool for semiconductor device fabrication and development, in particular, for diamond-based devices. However, some technological steps are still not fully optimized for its use. Indeed, ion implantation seems to affect the crystalline structure and electrical properties of diamond.

View Article and Find Full Text PDF

The development of new power devices taking full advantage of the potential of diamond has prompted the design of innovative 3D structures. This implies the overgrowth towards various crystallographic orientations. To understand the consequences of such growth geometries on the defects generation, a Transmission Electron Microscopy (TEM) study of overgrown, mesa-patterned, homoepitaxial, microwave-plasma-enhanced, chemical vapor deposition (MPCVD) diamond is presented.

View Article and Find Full Text PDF

In contrast to Si technology, amorphous alumina cannot act as a barrier for a carrier at diamond MOSFET gates due to their comparable bandgap. Indeed, gate leaks are generally observed in diamond/alumina gates. A control of the alumina crystallinity and its lattice matching to diamond is here demonstrated to avoid such leaks.

View Article and Find Full Text PDF

Epitaxial lateral growth will be required if complex diamond-based device architecture, such as, for example, Metal-oxide-semiconductor Field-effect transistors (MOSFETs) or epitaxial lateral overgrowth (ELO) substrates, need to be developed for high-power applications. To this end, undoped and doped non-planar homoepitaxial diamond were overgrown on (001)-oriented diamond-patterned substrates. Defects induced by both the heavy boron doping and three-dimensional (3D) growth were studied by transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature ) within the crystal.

View Article and Find Full Text PDF

Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array.

View Article and Find Full Text PDF

A simple, fast and cost-effective etching technique to create oriented nanostructures such as pyramidal and cylindrical shaped nanopores in diamond membranes by self-assembled metallic nanoparticles is proposed. In this process, a diamond film is annealed with thin metallic layers in a hydrogen atmosphere. Carbon from the diamond surface is dissolved into nanoparticles generated from the metal film, then evacuated in the form of hydrocarbons and, consequently, the nanoparticles enter the crystal volume.

View Article and Find Full Text PDF

A suspended system for measuring the thermal properties of membranes is presented. The sensitive thermal measurement is based on the 3ω dynamic method coupled to a Völklein geometry. The device obtained using micro-machining processes allows the measurement of the in-plane thermal conductivity of a membrane with a sensitivity of less than 10 nW/K (+∕-5 × 10(-3) Wm(-1) K(-1) at room temperature) and a very high resolution (ΔK/K = 10(-3)).

View Article and Find Full Text PDF