Publications by authors named "Eoin J O'Gorman"

Article Synopsis
  • The study investigates how rising temperatures due to climate change affect ecosystems, particularly freshwater food webs in high-latitude regions like Iceland and Russia.
  • Researchers conducted natural experiments in 14 streams with temperature increases of up to 20°C, discovering that warmer streams had less trophic diversity and a shift towards more reliance on local (autochthonous) carbon sources.
  • The findings suggest that higher temperatures lead to simpler food webs, confirming predictions about the impacts of global warming on freshwater ecosystems at large scales.
View Article and Find Full Text PDF

Urbanisation has reduced the abundance and diversity of many taxonomic groups, and the effects may be more pronounced on islands, which have a smaller regional species pool to compensate. Green spaces within urban environments may help to safeguard wildlife assemblages, and the associated habitat heterogeneity can even increase species diversity. Here, total abundance and species diversity of butterflies, birds, and vegetation at nine rural and nine urban locations were quantified on Lipsi Island, Greece.

View Article and Find Full Text PDF

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding.

View Article and Find Full Text PDF

Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity.

View Article and Find Full Text PDF

Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea).

View Article and Find Full Text PDF
Article Synopsis
  • * Findings reveal that increasing temperatures generally decrease species richness of diatoms and invertebrates, but this effect varies by region and is stronger in areas with lower productivity.
  • * Increased invertebrate biomass across all regions suggests that tolerant species may compensate for the decline in sensitive species, highlighting the importance of regional conditions in climate impact studies rather than assuming a one-size-fits-all effect.
View Article and Find Full Text PDF

The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset.

View Article and Find Full Text PDF

Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure.

View Article and Find Full Text PDF

Warming alters ecosystems through direct physiological effects on organisms and indirect effects via biotic interactions, but their relative impacts in the wild are unknown due to the difficulty in warming natural environments. Here we bridge this gap by embedding manipulative field experiments within a natural stream temperature gradient to test whether warming and apex fish predators have interactive effects on freshwater ecosystems. Fish exerted cascading effects on algal production and microbial decomposition via both green and brown pathways in the food web, but only under warming.

View Article and Find Full Text PDF

Deep-learning tools can help to construct historical, modern-day, and future food webs.

View Article and Find Full Text PDF

Organisms have the capacity to alter their physiological response to warming through acclimation or adaptation, but the consequence of this metabolic plasticity for energy flow through food webs is currently unknown, and a generalisable framework does not exist for modelling its ecosystem-level effects. Here, using temperature-controlled experiments on stream invertebrates from a natural thermal gradient, we show that the ability of organisms to raise their metabolic rate following chronic exposure to warming decreases with increasing body size. Chronic exposure to higher temperatures also increases the acute thermal sensitivity of whole-organismal metabolic rate, independent of body size.

View Article and Find Full Text PDF

The impacts of climate change on ecosystem structure and functioning are likely to be strongest at high latitudes due to the adaptation of biota to relatively low temperatures and nutrient levels. Soil warming is widely predicted to alter microbial, invertebrate, and plant communities, with cascading effects on ecosystem functioning, but this has largely been demonstrated over short-term (<10 year) warming studies. Using a natural soil temperature gradient spanning 10-35°C, we examine responses of soil organisms, decomposition, nitrogen cycling, and plant biomass production to long-term warming.

View Article and Find Full Text PDF

Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology.

View Article and Find Full Text PDF

Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results.

View Article and Find Full Text PDF

Climate warming is predicted to have major impacts on the structure of terrestrial communities, particularly in high latitude ecosystems where growing seasons are short. Higher temperatures may dampen seasonal dynamics in community composition as a consequence of earlier snowmelt, with potentially cascading effects across all levels of biological organisation. Here, we examined changes in community assembly and structure along a natural soil temperature gradient in the Hengill geothermal valley, Iceland, during the summer of 2015.

View Article and Find Full Text PDF

Biodiversity is typically considered as a one-dimensional metric (e.g., species richness), yet the consequences of species loss may be different depending on where extinctions occur in the food web.

View Article and Find Full Text PDF

Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S).

View Article and Find Full Text PDF

Microplastics are an emerging pollutant of high concern, with their prevalence in the environment linked to adverse impacts on aquatic organisms. However, our knowledge of these impacts on freshwater species is rudimentary, and there is almost no research directly testing how these effects can change under ongoing and future climate warming. Given the potential for multiple stressors to interact in nature, research on the combined impacts of microplastics and environmental temperature requires urgent attention.

View Article and Find Full Text PDF

Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer-resource interactions is thus essential for predicting ecological responses to warming. We explored feeding interactions between different predator-prey pairs in controlled-temperature chambers and in a system of naturally heated streams.

View Article and Find Full Text PDF
Article Synopsis
  • Predator-prey interactions in ecosystems create complex food webs with a universal trend of larger predators compared to their prey, which helps stabilize communities.
  • The study developed predator-trait models to predict body-mass ratios from a comprehensive database of 290 food webs across various ecosystems.
  • It was found that specific predator traits, such as size and movement type, significantly influence the body-size relationships, aiding in understanding and managing ecosystem stability.
View Article and Find Full Text PDF

Ecological studies of global warming impacts have many constraints. Organisms are often exposed to higher temperatures for short periods of time, probably underestimating their ability to acclimate or adapt relative to slower but real rates of warming. Many studies also focus on a limited number of traits and miss the multifaceted effects that warming may have on organisms, from physiology to behaviour.

View Article and Find Full Text PDF

As environmental DNA (eDNA) becomes an increasingly valuable resource for marine ecosystem monitoring, understanding variation in its persistence across contrasting environments is critical. Here, we quantify the breakdown of macrobial eDNA over a spatio-temporal axis of locally extreme conditions, varying from ocean-influenced offshore to urban-inshore, and between winter and summer. We report that eDNA degrades 1.

View Article and Find Full Text PDF

Environmental warming places physiological constraints on organisms, which may be mitigated by their feeding behavior. Theory predicts that consumers should increase their feeding selectivity for more energetically valuable resources in warmer environments to offset the disproportionate increase in metabolic demand relative to ingestion rate. This may also result in a change in feeding strategy or a shift towards a more specialist diet.

View Article and Find Full Text PDF

Global warming is predicted to significantly alter species physiology, biotic interactions and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. Here, we used a natural warming experiment in Iceland to investigate the changes in above-ground terrestrial plant and invertebrate communities along a soil temperature gradient (10°C-30°C).

View Article and Find Full Text PDF