Many printed electronic applications require strain-independent electrical properties to ensure deformation-independent performance. Thus, developing printed, flexible devices using 2D and other nanomaterials will require an understanding of the effect of strain on the electrical properties of nano-networks. Here, novel AC electrical techniques are introduced to fully characterize the effect of strain on the resistance of high-mobility printed networks, fabricated from of electrochemically exfoliated MoS nanosheets.
View Article and Find Full Text PDFSolution-processable 2D materials are promising candidates for a range of printed electronics applications. Yet maximizing their potential requires solution-phase processing of nanosheets into high-quality networks with carrier mobility (μ) as close as possible to that of individual nanosheets (μ). In practice, the presence of internanosheet junctions generally limits electronic conduction, such that the ratio of junction resistance () to nanosheet resistance (), determines the network mobility via μ/μ ≈ / + 1.
View Article and Find Full Text PDFPrinted networks of 2D nanosheets have found a range of applications in areas including electronic devices, energy storage systems and sensors. For example, the ability to print graphene networks onto flexible substrates enables the production of high-performance strain sensors. The network resistivity is known to be sensitive to the nanosheet dimensions which implies the piezoresistance might also be size-dependent.
View Article and Find Full Text PDFWearable devices have generally been rigid due to their reliance on silicon-based technologies, while future wearables will utilize flexible components for example transistors within microprocessors to manage data. Two-dimensional (2D) semiconducting flakes have yet to be investigated in fiber transistors but can offer a route toward high-mobility, biocompatible, and flexible fiber-based devices. Here, the electrochemical exfoliation of semiconducting 2D flakes of tungsten diselenide (WSe) and molybdenum disulfide (MoS) is shown to achieve homogeneous coatings onto the surface of polyester fibers.
View Article and Find Full Text PDFConstructing a semi-permanent base on the moon or Mars will require maximal use of materials found in situ and minimization of materials and equipment transported from Earth. This will mean a heavy reliance on regolith (Lunar or Marian soil) and water, supplemented by small quantities of additives fabricated on Earth. Here it is shown that SiO-based powders, as well as Lunar and Martian regolith simulants, can be fabricated into building materials at near-ambient temperatures using only a few weight-percent of carbon nanotubes as a binder.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
The development of multimodal nano- and micro-structures has become an increasingly popular area of research in recent years. In particular, the combination of two or more desirable properties within a single structure opens multiple opportunities from biomedicine, sensing, and catalysis, to a variety of optical applications. Here, for the first time, we report the synthesis and characterization of multimodal chiroptically active CaCO nanocomposites.
View Article and Find Full Text PDFNetworks of solution-processed nanomaterials are becoming increasingly important across applications in electronics, sensing and energy storage/generation. Although the physical properties of these devices are often completely dominated by network morphology, the network structure itself remains difficult to interrogate. Here, we utilise focused ion beam - scanning electron microscopy nanotomography (FIB-SEM-NT) to quantitatively characterise the morphology of printed nanostructured networks and their devices using nanometre-resolution 3D images.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Transparent conductors (TCs) represent key components in many applications from optoelectronic devices to electromagnetic shielding. While commercial applications typically use thin films of indium tin oxide, this material is brittle and increasingly scarce, meaning higher performing and cheaper alternatives are sought after. Solution-processible metals would be ideal owing to their high conductivities and printability.
View Article and Find Full Text PDFThe investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe) and tungsten disulfide (WS) as well as MoS as a comparison. We use Langmuir-Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2-5%), at low processing temperatures (120 °C) and without acid treatments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Printed strain sensors will be important in applications such as wearable devices, which monitor breathing and heart function. Such sensors need to combine high sensitivity and low resistance with other factors such as cyclability, low hysteresis, and minimal frequency/strain-rate dependence. Although nanocomposite sensors can display a high gauge factor (), they often perform poorly in the other areas.
View Article and Find Full Text PDF