The ability of cells to translate different extracellular cues into different intracellular responses is vital for their survival in unpredictable environments. In , cell polarity is modulated in response to environmental signals which allows cells to adopt varying morphologies in different external conditions. The responsiveness of cell polarity to extracellular cues depends on the integration of the molecular network that regulates polarity establishment with networks that signal environmental changes.
View Article and Find Full Text PDFThe limits of evolution have long fascinated biologists. However, the causes of evolutionary constraint have remained elusive due to a poor mechanistic understanding of studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic information on regulatory networks and cellular biology.
View Article and Find Full Text PDFCells owe their internal organization to self-organized protein patterns, which originate and adapt to growth and external stimuli via a process that is as complex as it is little understood. Here, we study the emergence, stability, and state transitions of multistable Min protein oscillation patterns in live Escherichia coli bacteria during growth up to defined large dimensions. De novo formation of patterns from homogenous starting conditions is observed and studied both experimentally and in simulations.
View Article and Find Full Text PDF