Biological membranes exhibit the ability to self-repair and dynamically change their shape while remaining impermeable. Yet, these defining features are difficult to reconcile with mechanical robustness. Here, we report on the spontaneous formation of a carbon nanoskin at the oil-water interface that uniquely combines self-healing attributes with high stiffness.
View Article and Find Full Text PDFNovel preparative approaches towards lamellar nanocomposites of carbon and inorganic materials are relevant for a broad range of technological applications. Here, we describe how to utilize the co-assembly of a liquid-crystalline hexaphenylene amphiphile and an aluminosilicate precursor to prepare carbon-aluminosilicate nanocomposites with controlled lamellar orientation and macroscopic order. To this end, the shear-induced alignment of a precursor phase of the two components resulted in thin films comprising lamellae with periodicities on the order of the molecular length scale, an "edge-on" orientation relative to the substrate and parallel to the shearing direction with order on the centimeter length scale.
View Article and Find Full Text PDFOligoynes with two or more conjugated carbon-carbon triple bonds are useful precursors for carbon-rich nanomaterials. However, their range of applications has so far been severely limited by the challenging syntheses, particularly in the case of oligoynes with functional groups. Here, we report a universal synthetic approach towards both symmetric and unsymmetric, functionalized hexaynes through the use of a modified Eglinton-Galbraith coupling and a sacrificial building block.
View Article and Find Full Text PDFNew therapeutics for glioblastoma multiforme and our ability to deliver them using efficient nanocarriers constitute topical areas of research. We report a comparative study of temozolomide and quercetin in the treatment of glioblastoma (GBM) in three-dimensions, and their incorporation into micelles obtained from synthetically articulated architectural copolymers, and a commercially available linear polymer poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A versatile synthetic methodology to telodendrimers, which can be easily adapted to the needs of other therapeutic interventions, is presented.
View Article and Find Full Text PDF