Oriented attachment of nanobricks into hierarchical multi-scale structures such as inorganic nanoclusters is one of the crystallization mechanisms that has revolutionized the field of nano and materials science. Herein, we show that the mosaicity, which measures the misalignment of crystal plane orientation between the nanobricks, governs their magneto-optical properties as well as the magnetic heating functions of iron oxide nanoclusters. Thanks to high-temperature and time-resolved millifluidic, we were able to isolate and characterize (structure, properties, function) the different intermediates involved in the diverse steps of the nanocluster's formation, to propose a detailed dynamical mechanism of their formation and establish a clear correlation between changes in mosaicity at the nanoscale and their resulting physical properties.
View Article and Find Full Text PDFOne of the most versatile routes for the elaboration of nanomaterials in materials science, including the synthesis of magnetic iron oxide nanoclusters, is the high-temperature polyol process. However, despite its versatility, this process still lacks reproducibility and scale-up, in addition to the low yield obtained in final materials. In this work, we demonstrate a home-made multiparametric continuous flow millifluidic system that can operate at high temperatures (up to 400 °C).
View Article and Find Full Text PDFMagnetite and maghemite multicore nanoflowers (NFs) synthesized using the modified polyol-mediated routes are to date among the most effective nanoheaters in magnetic hyperthermia (MHT). Recently, magnetite NFs have also shown high photothermal (PT) performances in the most desired second near-infrared (NIR-II) biological window, making them attractive in the field of nanoparticle-activated thermal therapies. However, what makes magnetic NFs efficient heating agents in both modalities still remains an open question.
View Article and Find Full Text PDF