Single-atom alloys (SAAs) have gained increasing prominence in the field of selective hydrogenation reactions due to their uniform distribution of active sites and the unique host-guest metal interactions. Herein, 15 SAAs are constructed to comprehensively elucidate the relationship between host-guest metal interaction and catalytic performance in the selective hydrogenation of 4-nitrostyrene (4-NS) by density functional theory (DFT) calculations. The results demonstrate that the SAAs with strong host-guest metal interactions exhibit a preference for N─O bond cleavage, and the reaction energy barrier of the hydrogenation process is primarily influenced by the host metal.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a heterogeneous, multifactorial neurodegenerative disorder characterized by three neurobiological factors beta-amyloid, pathologic tau, and neurodegeneration. There are no effective treatments for AD at a late stage, urging for early detection and prevention. However, existing statistical inference approaches in neuroimaging studies of AD subtype identification do not take into account the pathological domain knowledge, which could lead to ill-posed results that are sometimes inconsistent with the essential neurological principles.
View Article and Find Full Text PDFThe hydroalkylation tandem reaction of benzene to cyclohexylbenzene (CHB) provides an atom economy route for conversion and utilization of benzene; yet, it presents significant challenges in activity and selectivity control. In this work, we report a metal-support synergistic catalyst prepared calcination of W-precursor-containing montmorillonite (MMT) followed by Pd loading (denoted as Pd-WO/MMT, = 5, 15, and 25 wt %), which shows excellent catalytic performance for hydroalkylation of benzene. A combination study (X-ray diffraction (XRD), hydrogen-temperature programmed reduction (H-TPR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis, Raman, and density functional theory (DFT) calculations) confirms the formation of interfacial sites Pd-(WO)-H, whose concentration is dependent on the interaction between Pd and WO.
View Article and Find Full Text PDFUnderstanding the interfacial behaviors of biomolecules is crucial to applications in biomaterials and nanoparticle-based biosensing technologies. In this work, we utilized autoencoder-based graph clustering to analyze discontinuous molecular dynamics (DMD) simulations of lysozyme adsorption on a graphene surface. Our high-throughput DMD simulations integrated with a Go̅-like protein-surface interaction model makes it possible to explore protein adsorption at a large temporal scale with sufficient accuracy.
View Article and Find Full Text PDFHalogen vacancies are of great concern in blue-emitting perovskite quantum-dot light-emitting diodes because they affect their efficiency and spectral shift. Here, an enriched-bromine surface state is realized using a facile strategy that employs a PbBr stock solution for anion exchange based on Cd-doped perovskite quantum dots. It is found that the doped Cd ions are expected to reduce the formation energy of halogen vacancies filled by the external bromine ions, and the excess free bromine ions in solution are enriched in the surface by anchoring with halogen vacancies as sites, accompanied with the shedding of surface long-chain ligands during the anion exchange process, resulting in a Br-rich and "neat" surface.
View Article and Find Full Text PDFConsidering the inherent hydrophilic and porous nature of paper, the rapid absorption and diffusion of aqueous analyte solutions on paper-based SERS substrates may severely affect the Raman detection sensitivity and accuracy in the detection of target molecules. In this work, a series of hydrophobic CFP@PDA@AuNPs stripes were obtained through in situ synthesizing of gold nanoparticles (AuNPs) on a polydopamine (PDA)-decorated cellulose filter paper (CFP) and functionalized with perfluorodecanethiol (PFDT). When the SERS performance of the substrates was examined using 4-ATP, the hydrophobic CFP@PDA@AuNPs substrate showed superior sensitivity, reproducibility and stability due to the hydrophobic enrichment effect, with the detection limit decreasing to 10 M and the enhancement factor as high as 2.
View Article and Find Full Text PDFThe one-step hydroalkylation of benzene to cyclohexylbenzene (CHB) is a technically challenging and economically interesting reaction with great industrial importance, where bifunctional catalysts play a crucial role in such a tandem reaction. In this work, we report HPWO (HPW) modified Ni nanoparticles (NPs) supported on mixed metal oxides (Ni/MMOs), which are featured by HPW species localized on the surface of Ni NPs (denoted as HPW-Ni/MMOs). The optimal catalyst (0.
View Article and Find Full Text PDFThe development of high-sensitive biomolecular detection system is of great significance for diseases early diagnosis. The novel optical sensor based on the polarization-sensitive absorption of graphene has a great potential in biological detection. However, the detection sensitivity of the device can hardly meet the needs of clinical analysis currently.
View Article and Find Full Text PDFHighly crystalline glass-ceramics were successfully manufactured a one-step direct cooling method using Shuangqishan (Fujian, China) gold tailings as raw materials. A series of glass-ceramics were prepared by controlling the gold tailings addition and post-treatment. X-ray diffraction results show that the crystalline phase of glass-ceramics samples with high tailing addition content (65-80 wt%) is akermanite phase (CaMgSiO).
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Tuning the thermal properties of materials is considered to be of crucial significance for improving the performance of electronic devices. Along these lines, the development of van der Waals (vdW) heterostructures becomes an effective solution to affect the thermal transport mechanisms. However, vdW interactions usually block phonon transport, which leads to a reduction in thermal conductivity.
View Article and Find Full Text PDFThermal management plays an important role in miniaturized and integrated nanoelectronic devices, where finding ways to enable efficient heat-dissipation can be critical. 2D materials, especially graphene and hexagonal boron nitride (h-BN), are generally regarded as ideal materials for thermal management due to their high inherent thermal conductivity. In this paper, a new method is reported, which can be used to characterize thermal transport in 2D materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Catalytic conversion of a biomass derivative (levulinic acid, LA) to a high value-added product (γ-valerolactone, GVL) has attracted much attention, in which the control of catalytic selectivity plays an important role. Herein, a stepwise method was developed to prepare Co-MoO catalysts topological transformation (calcination reduction) from layered double hydroxide (Mo/CoAl-LDH) precursors. X-ray diffraction, high-resolution transmission electron microscopy, and hydrogen temperature-programmed reduction demonstrate the formation of MoO-decorated Co structures of Co-MoO samples.
View Article and Find Full Text PDFRecently, abundant resources, low-cost sodium-ion batteries are deemed to the new-generation battery in the field of large-scale energy storage. Nevertheless, poor active reaction dynamics, dissolution of intermediates and electrolyte matching problems are significant challenges that need to be solved. Herein, dimensional gradient structure of sheet-tube-dots is constructed with CoSe@CNTs-MXene.
View Article and Find Full Text PDFWith the growth of demand for flexible devices, the development of flexible electrodes used in energy storage devices has attracted much attention of researchers. In this work, a thin flexible cathode of Prussian blue analogue@polyaniline rooted in carbon cloth has been fabricated. The Prussian blue analogue (PBA) is an electrochemically active material grafted on flexible carbon cloth substrates, which had been precoated with polyaniline.
View Article and Find Full Text PDFAll inorganic perovskite nanocrystals CsPbX(X = Cl, Br, I) are the great potential candidates for the application of high-performance light emitting diodes (LED) due to their high Photoluminescence Quantum Yield (PLQY), high defect tolerance, narrow full-width half-maximum and tunable wavelength of 410-700 nm. However, the application of red-emitting (630-650 nm) CsPbBrInanocrystals are perplexed by phase segregation due to the composition of mixed halides and the difference in halide ion mobility. Herein, we provide an effective strategy to suppressing the migration of Br/I ions through Nidoping via a facile Hot-Injection method and the PLQY was improved as well.
View Article and Find Full Text PDFPrussian blue analogues are potential competitive energy storage materials due to their diverse metal combinations and wide three-dimensional ion channels. Here, we prepared a new highly crystalline monoclinic nickel-doped cobalt hexacyanoferrate via a feasible and simple one-step co-precipitation method. In the process of sodium-ion de-intercalation, three stable charge and discharge platforms, which are consistent with the cyclic voltammetry performance, are seen for the first time, showing the function of nickel ions in Prussian blue.
View Article and Find Full Text PDFAll inorganic carbon-based planar perovskites, particularly CsPbBr, have attracted considerable attention due to their excellent stability against oxygen, moisture, and heat for photovoltaic utilization. However, the power conversion efficiency of carbon-based planar CsPbBr perovskite solar cells is mostly low, primarily because of the inferior film quality with undesirable crystallization and narrow light absorbance ranges. Herein, we develop a novel direct deposition approach combined with Sn doping to achieve highly efficient and stable carbon-based Sn-doped CsPbBr perovskite solar cells.
View Article and Find Full Text PDFHighly efficient and blue-emitting CsPbBr quantum dots were successfully synthesized by two-step supersaturated recrystallization under ambient condition. This method could control the particle size within 2.8 nm, thus resulting in strong quantum confinement effect of the products.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2020
Environmentally friendly and long PL lifespan Mn-doped CuInZnS (Mn:CIZS) and CuInZnS/ZnS (Mn:CIZS/ZnS) QDs, with respective red and yellow emissions, were synthesized using nontoxic precursors via a facile dual-step process based on the one-pot method. The resulting Mn:CIZS and Mn:CIZS/ZnS QDs exhibited confirmed strong red and yellow photoluminescence emissions at approximately 654 nm and 580 nm, respectively. The measured PL decay lifespan for the Mn: CIZS QDs is 2.
View Article and Find Full Text PDFCarbon-based inorganic perovskite solar cells (PSCs) have demonstrated an excellent performance in the field of photovoltaics owing to their simple fabrication techniques, low-cost and superior stability. Despite the lower efficiency of devices with a carbon electrode compared with the conventional structure, the potential applications in large scale have attracted increasing attention. Herein, we employ a mixed carbon electrode inorganic PSC by incorporating one-dimensional structure carbon nanotubes (CNTs) and two-dimensional TiC-MXene nanosheets into a commercial carbon paste.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
We report a simple, robust, and inexpensive strategy to enable all-inorganic CsPbX perovskite nanocrystals (NCs) with a set of markedly improved stabilities, that is, water stability, compositional stability, phase stability, and phase segregation stability via impregnating them in solid organic salt matrices (i.e., metal stearate; MSt).
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Low-cost manganese hexacyanoferrate (NMHCF) possesses many favorable advantages including high theoretical capacity, ease of preparation, and robust open channels that enable faster Na diffusion kinetics. However, high lattice water and low electronic conductivity are the main bottlenecks to their pragmatic realization. Here, we present a strategy by anchoring NMHCF on reduced graphene oxide (RGO) to alleviate these problems, featuring a specific discharge capacity of 161/121 mA h g at a current density of 20/200 mA g.
View Article and Find Full Text PDFInorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr , dual-phase all-inorganic perovskite composite CsPbBr -CsPb Br thin films are prepared as light-harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.
View Article and Find Full Text PDF