Publications by authors named "Enze Ma"

The coronavirus disease 2019 (COVID-19) has merged as a global health threat since its outbreak in December 2019. Despite widespread recognition, there has been a paucity of studies focusing on the T cell receptor (TCR) bias in adaptive immunity induced by SARS-CoV-2. This research conducted a comparative analysis of the TCR immune repertoire to identify notable αβ TCR bias sequences associated with the SARS-CoV-2 virus antigen.

View Article and Find Full Text PDF

Intraparticle domains are the critical locations for storing contaminants and retarding contaminant transport in subsurface environments. While the kinetics and extent of antibiotics sorption and desorption in subsurface materials have been extensively studied, their behaviors in intraparticle domains have not been well understood. This study investigated the sorption and desorption of antibiotics (ATs) in the intraparticle domains using quartz grains and clay, and antibiotic tetracycline (TC) and levofloxacin (LEV) as examples that are commonly present in groundwater systems.

View Article and Find Full Text PDF

Introduction: Currently, there are limited accessible and cost-effective biomarkers for preclinical Alzheimer's disease (AD) patients. However, the apolipoprotein E (ApoE) polymorphic alleles can predict if someone is at high (e4), neutral (e3), or low (e2) genetic risk for developing AD. This study analyzed electroencephalogram (EEG) reports from individuals with various ApoE genotypes, aiming to identify EEG changes and patterns that could potentially serve as predictive markers for preclinical AD progression.

View Article and Find Full Text PDF

This retrospective study assesses the prevalence of otolaryngology (OTO) disease in houseless patients on O'ahu based on data from the Houseless Outreach and Medical Education (HOME) clinics, a medical student-run, primary health care service. It is important to note that this data represents only a snapshot in time of the OTO diseases present in this population. Records were examined from September 3, 2020 to September 30, 2021.

View Article and Find Full Text PDF

Background: In plants, RNA silencing is an important conserved mechanism to regulate gene expression and combat against abiotic and biotic stresses. Dicer-like (DCL) and Argonaute (AGO) proteins and RNA-dependent RNA polymerase (RDR) are the core elements involved in gene silencing and their gene families have been explored in many plants. However, these genes and their responses to stresses have not yet been well characterized in adzuki bean.

View Article and Find Full Text PDF

Lakes are important natural resources and carbon gas emitters and are undergoing rapid changes worldwide in response to climate change and human activities. A detailed global characterization of lakes and their long-term dynamics does not exist, which is however crucial for evaluating the associated impacts on water availability and carbon emissions. Here, we map 3.

View Article and Find Full Text PDF

The sequence assembly algorithms have rapidly evolved with the vigorous growth of genome sequencing technology over the past two decades. Assembly mainly uses the iterative expansion of overlap relationships between sequences to construct the target genome. The assembly algorithms can be typically classified into several categories, such as the Greedy strategy, Overlap-Layout-Consensus (OLC) strategy, and de Bruijn graph (DBG) strategy.

View Article and Find Full Text PDF

Surgical margin status is one of the strongest prognosticators in predicting patient outcomes in head and neck cancer, yet head and neck surgeons continue to face challenges in the accurate detection of these margins with the current standard of care. Novel intraoperative imaging modalities have demonstrated great promise for potentially increasing the accuracy and efficiency in surgical margin delineation. In this current study, we collated and analyzed various intraoperative imaging modalities utilized in head and neck cancer to evaluate their use in discriminating malignant from healthy tissues.

View Article and Find Full Text PDF

During the lateral transport with subsurface flow, amounts of manufactured volatile organic chemicals and gases dissolved in groundwater are emitted into the atmosphere via upward diffusion through soils. Quantifying gas emissions is important for assessing environmental risk associated with these constituents (e.g.

View Article and Find Full Text PDF

In March 2020, Hawai'i instituted public health measures to prevent the spread of Coronavirus disease 2019 (COVID-19), including stay-at-home orders, closure of non-essential businesses and parks, use of facial coverings, social distancing, and a mandatory 14-day quarantine for travelers. In response to these measures, Hawai'i Pacific Neuroscience (HPN) modified practice processes to ensure continuity of neurological treatment. A survey of patients was performed to assess the impact of the COVID-19 pandemic and pandemic-related practice processes for quality improvement.

View Article and Find Full Text PDF

Objective: A survey was implemented for early assessment of pandemic-related practice processes and quality improvement (QI).

Background: In response to the public health measures in Hawaii to curtail the coronavirus 2019 pandemic, Hawaii Pacific Neuroscience (HPN) adapted their patient care to ensure continuity of neurological treatment.

Methods: The telephone survey was conducted on patients seen at HPN during the period of April 22, 2020-May 18, 2020 to address four areas related to patients' outpatient experience: delivery of care, general well-being, experience with telemedicine, and disease-specific questions.

View Article and Find Full Text PDF

Mass transfer from nonaqueous phase liquid (NAPL) to entrapped air induced by a fluctuating water table commonly occurs in residual NAPL zones in aquifers. Gas bubble expansion and vertical migration due to interphase mass transfer could facilitate the upward transport of volatile organic compounds (VOCs) in the aquifer and result in higher mass fluxes into a building relative to those of diffusion-limited (D-L) VOC transport. However, the current vapor intrusion models have not considered bubble migration.

View Article and Find Full Text PDF

ATM is a well-known master regulator of double strand break (DSB) DNA repair and the defective DNA repair has been therapeutically exploited to develop PARP inhibitors based on the synthetic lethality strategy. ATM mutation is found with increased prevalence in advanced metastatic castration-resistant prostate cancer (mCRPC). However, the molecular mechanisms underlying ATM mutation-driving disease progression are still largely unknown.

View Article and Find Full Text PDF

Recent studies have demonstrated the benefits of water-dielectric interfaces in electrostatic energy harvesting. Most efforts have been focused on extracting the kinetic energy from the motions of water drops on hydrophobic surfaces, and thus, the resulting schemes inherently prefer cases where the water drops move at a high speed, or vibrate at a high frequency. Here we report a method for directly harvesting ambient mechanical energy as electric potential energy through water droplets by making alternate contacts with CYTOP and PTFE thin films.

View Article and Find Full Text PDF

A time-distance-dependent deposition model is built to investigate the effects of hydrodynamic forces on the transport and deposition of polydispersed particles and the evolution of deposition rates with time and distance. Straining and the heterogeneity of the particle population are considered to play important roles in the decreasing distribution of deposition rates. Numerical simulations were applied in a series of sand column experiments at different fluid velocities for three different porous media.

View Article and Find Full Text PDF

In this paper, numerical simulations of experimental data were performed with kinetic rate coefficients to characterize the retention and re-entrainment dynamics under different hydrodynamic conditions for monodisperse and polydisperse latex particles (3, 10, 16μm and the mixture). The results show that drastic increase in fluid velocity provokes hardly any remarkable decrease in retention in the presence of large energy barriers (>2000kT). Systematical increases in deposition and re-entrainment dynamic rates were observed with fluid velocity and/or particle size.

View Article and Find Full Text PDF