Publications by authors named "Enyun Wang"

Introduction: Surrogate rapid serological assay was urgently demanded for accessibly interpretation of immunity potency and duration of neutralizing antibody against SARS-CoV-2. The longitudinal trajectory of antibody profile with a reliable large-scale assay was crucial to judge the protective immune status, avoid futile therapy and provide insight into the booster vaccination minimizing the risk of COVID-19.

Methods: A total of 195 volunteers were enrolled for a two-doses procedure (0 and 28 days) of inactive vaccination, as well as ten COVID-19 convalescents.

View Article and Find Full Text PDF

Background: Currently, mass vaccine inoculation against coronavirus disease-2019 (COVID-19) has been being implemented globally. Rapid and the large-scale detection of serum neutralizing antibodies (NAbs) laid a foundation for assessing the immune response against SARS-CoV-2 infection and vaccine. Additional assessments include the duration of antibodies and the optimal time for a heightened immune response.

View Article and Find Full Text PDF

Objective: Reliable high-throughput serological assays for SARS-CoV-2 antibodies present an important role in the strength and duration of immunity after vaccination. The study investigated the analytical and clinical performances of neutralizing antibodies (NTAb) assay by chemiluminescent (CLIA), and SARS-CoV-2 neutralizing antibody after vaccination in real world.

Methods: The analytical performances of CLIA for SARS-CoV-2 NTAb were evaluated, followed by the sensitivity and specificity identified with a PRNT test from 50 volunteers.

View Article and Find Full Text PDF

Background: Seldom performance evaluation and diagnosis comparison studies were reported for different chemiluminescent immunoassay (CLIA) kits approved under an emergency approval program for SARS-CoV-2 infection.

Methods: A total of 100 and 105 serum separately from non-infected populations and COVID-19 patients were detected with SARS-CoV-2 IgM and IgG kits. The characteristics including precision, functional sensitivity, linearity, and accuracy were evaluated for Axceed, iFlash, and Maglumi CLIA kits.

View Article and Find Full Text PDF

In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions.

View Article and Find Full Text PDF

In this study, we combine graphene with gold oxide (AuOx), a transparent and high-work-function electrode material, to achieve a high-efficient, low-bias, large-area, flexible, transparent, broadband, and bifacial-operable photodetector. The photodetector operates through hot electrons being generated in the graphene and charge separation occurring at the AuOx-graphene heterojunction. The large-area graphene covering the AuOx electrode efficiently prevented reduction of its surface; it also acted as a square-centimeter-scale active area for light harvesting and photodetection.

View Article and Find Full Text PDF

We demonstrate an inspection technique, based on only one ellipsometric parameter, Ψ, of spectroscopic ellipsometry (SE), for the rapid, simultaneous identification of both the structural quality and thicknesses of large-area graphene films. The measured Ψ spectra are strongly affected by changes in the out-of-plane absorption coefficients (αTM); they are also correlated to the ratio of the intensities of the D and G bands in Raman spectra of graphene films. In addition, the electronic transition state of graphene within the UV regime assists the characterization of the structural quality.

View Article and Find Full Text PDF