Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/β-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3β paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α.
View Article and Find Full Text PDFMolecular dynamics was used to optimize the droperidol-hERG complex obtained from docking. To accommodate the inhibitor, residues T623, S624, V625, G648, Y652, and F656 did not move significantly during the simulation, while F627 moved significantly. Binding sites in cryo-EM structures and in structures obtained from molecular dynamics simulations were characterized using solvent mapping and Atlas ligands, which were negative images of the binding site, were generated.
View Article and Find Full Text PDFPhospholipase D (PLD) is a phospholipase enzyme responsible for hydrolyzing phosphatidylcholine into the lipid signaling molecule, phosphatidic acid, and choline. From a therapeutic perspective, PLD has been implicated in human cancer progression as well as a target for neurodegenerative diseases, including Alzheimer's. Moreover, knockdown of PLD rescues the ALS phenotype in multiple models of ALS (amyotrophic lateral sclerosis) and displays modest motor benefits in an SOD1 ALS mouse model.
View Article and Find Full Text PDFApoptosis signal-regulating kinase 1 (ASK1) is one of the key mediators of the cellular stress response that regulates inflammation and apoptosis. To probe the therapeutic value of modulating this pathway in preclinical models of neurological disease, we further optimized the profile of our previously reported inhibitor . This effort led to the discovery of , a potent (cell IC = 25 nM) and selective ASK1 inhibitor with suitable pharmacokinetic and brain penetration (rat Cl/Cl = 1.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2021
We analyzed the influence of calculated physicochemical properties of more than 20,000 compounds on their P-gp and BCRP mediated efflux, microsomal stability, hERG inhibition, and plasma protein binding. Our goal was to provide guidance for designing compounds with desired pharmacokinetic profiles. Our analysis showed that compounds with ClogP less than 3 and molecular weight less than 400 will have high microsomal stability and low plasma protein binding.
View Article and Find Full Text PDFApoptosis signal-regulating kinase 1 (ASK1) is a key mediator in the apoptotic and inflammatory cellular stress response. To investigate the therapeutic value of modulating this pathway in neurological disease, we have completed medicinal chemistry studies to identify novel CNS-penetrant ASK1 inhibitors starting from peripherally restricted compounds reported in the literature. This effort led to the discovery of , a novel ASK1 inhibitor with good potency (cell IC = 138 nM), low clearance (rat Cl/Cl = 0.
View Article and Find Full Text PDFBackground: Clinical studies have reported overexpression of PDE5 and elevation of intracellular cyclic GMP in various types of cancer cells. ABCC5 transports cGMP out of the cells with high affinity. PDE5 inhibitors prevent both cellular metabolism and cGMP efflux by inhibiting ABCC5 as well as PDE5.
View Article and Find Full Text PDFPhospholipase D enzymes (PLDs) are ubiquitous phosphodiesterases that produce phosphatidic acid (PA), a key second messenger and biosynthetic building block. Although an orthologous bacterial Streptomyces sp. strain PMF PLD structure was solved two decades ago, the molecular basis underlying the functions of the human PLD enzymes (hPLD) remained unclear based on this structure due to the low homology between these sequences.
View Article and Find Full Text PDFNrf2 is a transcription factor regulating expression of the Phase II Antioxidant Response and plays an important role in neuroprotection and detoxification. Nrf2 activation is inhibited by interaction with Keap1. Covalent Keap1 inhibitors such as dimethyl fumarate (DMF) and RTA-408 are either on the market or in late stage clinical trials which implies potential benefit of Nrf2 activation.
View Article and Find Full Text PDFStructural analysis of a known apoptosis signal-regulating kinase 1 (ASK1) inhibitor bound to its kinase domain led to the design and synthesis of the novel macrocyclic inhibitor (cell IC = 1.2 μM). The profile of this compound was optimized for CNS penetration following two independent strategies: a rational design approach leading to and a parallel synthesis approach leading to .
View Article and Find Full Text PDFProtein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory.
View Article and Find Full Text PDFGerminal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases.
View Article and Find Full Text PDFAim: Low oxytocin (OT) level is involved in a number of psychiatric diseases, indicating that OT could be used to aid treating these disorders. OT itself is unable to cross the blood-brain barrier, and development of new small nonpeptide drugs targeting the OT receptor (OXTR) may be beneficial for treating mental disorders. Results & methodology: Three OXTR models were constructed based on crystallized homologous proteins (Protein Data Bank [PDB]: 2Y00, PDB: 4BVN and PDB: 4LDE).
View Article and Find Full Text PDFAim: Virtual screening selects compounds that resemble a known modulator or compounds that fit into the binding site of a target protein. Computational solvent mapping defines important chemical features for binding to a target protein. Results/methodology: We have tested the ability to use solvent mapping for generating a 'fake' ligand that is a negative image of the binding site.
View Article and Find Full Text PDFRORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2015
RORγt is a pivotal regulator of a pro-inflammatory gene expression program implicated in the pathology of several major human immune-mediated diseases. Evidence from mouse models demonstrates that genetic or pharmacological inhibition of RORγ activity can block the production of pathogenic cytokines, including IL-17, and convey therapeutic benefit. We have identified and developed a biaryl-carboxylamide series of RORγ inverse agonists via a structure based design approach.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2015
The nuclear receptor RORγ plays a central role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including TH17 cells. RORγ-dependent inflammation has been implicated in the pathogenesis of several major autoimmune diseases and thus RORγ is an attractive target for therapeutic intervention in these diseases. Starting from a lead biaryl compound 4a, replacement of the head phenyl moiety with a substituted aminopyrazole group resulted in a series with improved physical properties.
View Article and Find Full Text PDFThe voltage-gated potassium channel encoded by hERG carries a delayed rectifying potassium current (IKr) underlying repolarization of the cardiac action potential. Pharmacological blockade of the hERG channel results in slowed repolarization and therefore prolongation of action potential duration and an increase in the QT interval as measured on an electrocardiogram. Those are possible to cause sudden death, leading to the withdrawals of many drugs, which is the reason for hERG screening.
View Article and Find Full Text PDFOver the past two decades, solvent mapping has emerged as a useful tool for identifying hot spots within binding sites on proteins for drug-like molecules and suggesting properties of potential binders. While the experimental technique requires solving multiple crystal structures of a protein in different solvents, computational solvent mapping allows for fast analysis of a protein for potential binding sites and their druggability. Recent advances in genomics, systems biology and interactomics provide a multitude of potential targets for drug development and solvent mapping can provide useful information to help prioritize targets for drug discovery projects.
View Article and Find Full Text PDFPIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket.
View Article and Find Full Text PDFDrug Discov Today Technol
December 2013
Several advances in the fields of crystallography, molecular modeling, biophysical assays and chemistry are converging to making protein-protein interaction targets more amenable to drug design. These include steps towards improving crystallization of protein-protein complexes, identifying the clusters of residues that constitute putative small molecule binding 'hot spots', generating new methods for detecting the binding of small molecules to target proteins, and generating custom libraries via diversity oriented synthesis to enable the identification of natural-product-like hits.
View Article and Find Full Text PDFKeap1 binds to the Nrf2 transcription factor to promote its degradation, resulting in the loss of gene products that protect against oxidative stress. While cell-active small molecules have been identified that modify cysteines in Keap1 and effect the Nrf2 dependent pathway, few act through a non-covalent mechanism. We have identified and characterized several small molecule compounds that specifically bind to the Keap1 Kelch-DC domain as measured by NMR, native mass spectrometry and X-ray crystallography.
View Article and Find Full Text PDFProtein kinases, which play an important role in the regulation of the majority of cellular processes, especially those involved in cellular signal transduction, by catalyzing the phosphorylation of specific proteins, are the attractive targets of drug design in pharmaceuticals industry. Interestingly, up to 10% of proteins in the human kinome termed pseudokinases are predicted to be enzymatically inactive, but are still pivotal in regulating diverse cellular processes and thus may be a potential therapeutic target to a certain extent. To study the underlying molecular mechanisms, molecular dynamics simulations were performed to investigate the role of bivalent cations Mg²⁺ and Mn²⁺ in the structural stabilities and dynamical behaviors of vaccinia related kinase 3 (VRK3), which was the first solved crystal structure of the pseudokinase, and that of its closest active relatives VRK1 and VRK2.
View Article and Find Full Text PDF