Publications by authors named "Enxiang Jiao"

Collagen contains abundant cell binding motifs, which are conducive to adhesion, migration, and differentiation, maintain cell vitality and promote cell proliferation. However, pure collagen hydrogel has some shortcomings such as poor mechanical properties, poor thermal stability and fast degradation. Numerous studies have shown that the properties of collagen can be improved by combining it with natural polysaccharides such as alginate, chitosan, hyaluronic acid and cellulose.

View Article and Find Full Text PDF

Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.

View Article and Find Full Text PDF

The fabrication of polymer composites with excellent thermal conductivity typically involves complex matrix or fillers modifications. This study proposed a simple technique based on precursor selection for obtaining highly thermally conductive cellulose nanofiber (CNF)/supramolecule-synthesized carbon nitride (SCN) composites. Fourier-transform infrared tests demonstrated the construction of hydrogen bonds between CNF and SCN; a highly ordered structure and relatively compact in-plane stacking were confirmed via scanning electron microscopy and X-ray diffraction characterizations.

View Article and Find Full Text PDF

This paper reports a fresh and robust strategy to develop polyurethane/polysiloxane pressure-sensitive adhesives (PSAs) with excellent properties by replacing part of C5 petroleum resin with modified lignin. A unique aspect of this work is the use of renewable lignin to obtain modified monomers. The phenolic hydroxyl group of lignin is increased by 21.

View Article and Find Full Text PDF