Publications by authors named "Ensley H"

Article Synopsis
  • * The structure of mannans, particularly the phosphodiester linkages and mannosyl repeat units, is essential for developing effective anti-fungal vaccines and treatments.
  • * This review emphasizes creating synthetic strategies for phosphodiester linkages to produce mannan glycomimetics that can stimulate immune responses against fungal pathogens like Candida albicans and Candida auris.
View Article and Find Full Text PDF

Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L.

View Article and Find Full Text PDF

Candida auris is an emerging fungal pathogen that has become a world-wide public health threat. While there have been numerous studies into the nature, composition and structure of the cell wall of Candida albicans and other Candida species, much less is known about the C. auris cell wall.

View Article and Find Full Text PDF

The cell wall contains mannans and glucans that are recognized by the host immune system. In this chapter, we will describe the methods to isolate mannans and glucans from the C. albicans cell wall.

View Article and Find Full Text PDF

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response.

View Article and Find Full Text PDF

Ligation of Dectin-1 by fungal glucans elicits a Th17 response that is necessary for clearing many fungal pathogens. Laminarin is a (1→3, 1→6)-β-glucan that is widely reported to be a Dectin-1 antagonist, however, there are reports that laminarin is also a Dectin-1 agonist. To address this controversy, we assessed the physical properties, structure, purity, Dectin-1 binding, and biological activity of five different laminarin preparations from three different commercial sources.

View Article and Find Full Text PDF
Article Synopsis
  • The innate immune system can tell the difference between yeast and hyphae forms of the fungus Candida albicans, but it's still a mystery how it does that.
  • Researchers found that the glucans (sugar molecules) in hyphae have a special structure that's different from those in yeast, which helps the immune system recognize them better.
  • The hyphal glucans trigger a stronger immune response compared to yeast glucans, showing how our body reacts differently to these two forms of the same fungus.
View Article and Find Full Text PDF

β-Glucan is a (1→3)-β-linked glucose polymer with (1→6)-β-linked side chains and a major component of fungal cell walls. β-Glucans provide structural integrity to the fungal cell wall. The nature of the (1-6)-β-linked side chain structure of fungal (1→3,1→6)-β-D-glucans has been very difficult to elucidate.

View Article and Find Full Text PDF

The Candida albicans cell wall provides an architecture that allows for the organism to survive environmental stress as well as interaction with host tissues. Previous work has focused on growing C. albicans on media such as Sabouraud or YPD at 30°C.

View Article and Find Full Text PDF

The synthesis of laminarahexaose is described. NMR studies of several of the intermediates leading to the beta-1,3-glucan show anomalously small coupling constants for some of the C-1 hydrogens. An X-ray structure for the protected hexasaccharide shows that the small coupling constants are due to some of the glucopyranose rings adopting a twist-boat conformation.

View Article and Find Full Text PDF

Glucans are structurally diverse fungal biopolymers that stimulate innate immunity and are fungal pathogen-associated molecular patterns. Dectin-1 is a C-type lectin-like pattern recognition receptor that binds glucans and induces innate immune responses to fungal pathogens. We examined the effect of glucan structure on recognition and binding by murine recombinant Dectin-1 with a library of natural product and synthetic (1-->3)-beta/(1-->6)-beta-glucans as well as nonglucan polymers.

View Article and Find Full Text PDF

Glucans are immunomodulatory carbohydrates found in the cell walls of fungi and certain bacteria. We examined the pharmacokinetics of three water-soluble glucans (glucan phosphate, laminarin, and scleroglucan) after oral administration of 1 mg/kg doses in rats. Maximum plasma concentrations for glucan phosphate occurred at 4 h.

View Article and Find Full Text PDF

The use of 4-acetoxy-2,2-dimethylbutanoyl protecting group for the C2-hydroxyl allows the selective formation of β-glycosides without producing α-glycosides. This very bulky protecting group can be removed under mild conditions.

View Article and Find Full Text PDF

A derivative of 1,10-phenanthroline that binds to UO(2)(2+) with nanomolar affinity was found to be a very effective immunogen for the generation of antibodies directed toward chelated complexes of hexavalent uranium. This study describes the synthesis of 5-isothiocyanato-1,10-phenanthroline-2,9-dicarboxylic acid and its use in the generation and functional characterization of a group of monoclonal antibodies that recognize the most soluble and toxic form of uranium, the hexavalent uranyl ion (UO(2)(2+)). Three different monoclonal antibodies (8A11, 10A3, and 12F6) that recognize the 1:1 complex between UO(2)(2+) and 2,9-dicarboxy-1,10-phenanthroline (DCP) were produced by the injection of BALB/c mice with DCP-UO(2)(2+) covalently coupled to a carrier protein.

View Article and Find Full Text PDF

Glucans are microbial cell wall carbohydrates that are shed into the circulation of patients with infections. Glucans are immunomodulatory and have structures that are influenced by bacterial or fungal species and growth conditions. We developed a method to covalently label carbohydrates with a fluorophore on the reducing terminus, and used the method to study the pharmacokinetics following intravenous administration of three highly purified and characterized glucans (glucan phosphate, laminarin and scleroglucan) that varied according to molecular size, branching frequency and solution conformation.

View Article and Find Full Text PDF

Glucans are cell wall constituents of fungi and bacteria that bind to pattern recognition receptors and modulate innate immunity, in part, by macrophage activation. We used surface plasmon resonance to examine the binding of glucans, differing in fine structure and charge density, to scavenger receptors on membranes isolated from human monocyte U937 cells. Experiments were performed at 25 degrees C using a biosensor surface with immobilized acetylated low density lipoprotein (AcLDL).

View Article and Find Full Text PDF

Glucans are fungal cell wall polysaccharides which stimulate innate immune responses. We determined the minimum unit ligand that would bind to glucan receptors on human U937 cells using laminarin-derived pentaose, hexaose, and heptaose glucan polymers. When U937 membranes were pretreated with the oligosaccharides and passed over a glucan surface, only the heptasaccharide inhibited the interaction of glucan with membrane receptors at a K(d) of 31 microM (95% CI 20-48 microM) and 100% inhibition.

View Article and Find Full Text PDF

Fungal cell wall glucans nonspecifically stimulate various aspects of innate immunity. Glucans are thought to mediate their effects via interaction with membrane receptors on macrophages, neutrophils, and NK cells. There have been no reports of glucan receptors on nonimmune cells.

View Article and Find Full Text PDF

Polymeric carbohydrates have been reported to modulate inflammatory responses in vitro and in vivo. Previous reports suggest that certain carbohydrate polymers, such as (1-->3)-beta-D-glucans, may possess free radical scavenging activity. If glucans are free radical scavengers then it might explain, in part, the ability of these ligands to modulate inflammatory responses.

View Article and Find Full Text PDF

Glucans are (1-3)-beta-D-linked polymers of glucose that are produced as fungal cell wall constituents and are also released into the extracellular milieu. Glucans modulate immune function via macrophage participation. The first step in macrophage activation by (1-3)-beta-D-glucans is thought to be the binding of the polymer to specific macrophage receptors.

View Article and Find Full Text PDF

Glucans are (1-->3)-beta-linked glucose polymers which have immune-stimulating capability. The extraction of water-insoluble (1-->3)-beta-D-glucan form Saccharomyces cerevisiae employs hydrochloric acid. Hydrochloric acid is difficult to employ in the large-scale pharmaceutical extraction of glucans due to its corrosive nature and toxicity.

View Article and Find Full Text PDF

Glucan phosphate, a water-soluble, chemically defined (1-->3)-beta-D-glucan biologic response modifier, has been reported to exert antisepsis activity and accelerate wound healing. In this study we describe the specific binding of glucan phosphate to human and murine monocyte/macrophage cell lines, U937 and J774A.1, respectively.

View Article and Find Full Text PDF

A polysaccharide (MAR-10) was isolated from the aqueous extract of the plant Hyssop officinalis and examined for its activity against HIV-1 (SF strain) in HUT78 T cell line and primary cultures of peripheral blood mononuclear cells. MAR-10, in a concentration-dependent manner, inhibited HIV-1 replication as demonstrated by the inhibition of HIV-1 p24 antigen and syncytia formation. Furthermore, MAR-10 had no significant direct toxicity or effect on lymphocyte functions or CD4+ and CD8+ T cell counts.

View Article and Find Full Text PDF

This report describes a method for the solubilization of micro-particulate (1-->3)-beta-D-glucan. Insoluble glucan is dissolved in methyl sulfoxide and urea (8 M) and partially sulfated at 100 degrees. The resulting water-soluble product is called glucan sulfate.

View Article and Find Full Text PDF