More than a decade ago, Dr. Curtis Olson published a futuristic commentary predicting the next era of Continuing Professional Development (CPD). While Dr.
View Article and Find Full Text PDFClin Pharmacol Ther
April 2012
Mechanisms by which efavirenz diminishes methadone plasma concentrations are unknown. This investigation determined efavirenz influence on clinical methadone disposition and miosis, intravenous and oral alfentanil clearance (hepatic and intestinal cytochrome P450 3A4/5 (CYP3A4/5) activity), fexofenadine disposition (intestinal transporters activity), and efavirenz clearance and 8-hydroxylation (CYP2B6 activity), and human hepatocyte effects. Efavirenz induced systemic and oral alfentanil clearances two- to fivefold and induced efavirenz 8-hydroxylation.
View Article and Find Full Text PDFAs the fastest folding protein, the villin headpiece (HP35) serves as an important bridge between simulation and experimental studies of protein folding. Despite the simplicity of this system, experiments continue to reveal a number of surprises, including structure in the unfolded state and complex equilibrium dynamics near the native state. Using 2.
View Article and Find Full Text PDFUsing molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation.
View Article and Find Full Text PDFElectrostatic fields at the interface of the Ras binding domain of the protein Ral guanine nucleotide dissociation stimulator (RalGDS) with the structurally analogous GTPases Ras and Rap1A were measured with vibrational Stark effect (VSE) spectroscopy. Eleven residues on the surface of RalGDS that participate in this protein-protein interaction were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe in the form of the thiocyanate (SCN) functional group. The measured SCN absorption energy on the monomeric protein was compared with solvent-accessible surface area (SASA) calculations and solutions to the Poisson-Boltzmann equation using Boltzmann-weighted structural snapshots from molecular dynamics simulations.
View Article and Find Full Text PDFWe present a Bayesian method for inferring the potential energy experienced by a particle subject to Brownian dynamics. Assuming polynomial potentials, the best polynomial order can be determined by analytical computation of a series of Bayes factors. The coefficients can be estimated from marginal posterior distributions.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2015
Computer simulations can complement experiments by providing insight into molecular kinetics with atomic resolution. Unfortunately, even the most powerful supercomputers can only simulate small systems for short timescales, leaving modeling of most biologically relevant systems and timescales intractable. In this work, however, we show that molecular simulations driven by adaptive sampling of networks called Markov State Models (MSMs) can yield tremendous time and resource savings, allowing previously intractable calculations to be performed on a routine basis on existing hardware.
View Article and Find Full Text PDFSingle molecule spectroscopy experiments and molecular dynamics simulations have several profound features in common, chief among which is that both follow the dynamics of some degrees of freedom of a single molecule over time. The analysis is essentially the same: one investigates the changes in the degrees of freedom followed. For instance, in a single molecule fluorescence experiment, the degree of freedom is often the number of photons detected in some time period.
View Article and Find Full Text PDFJ Phys Chem B
September 2009
In this work, we develop a fully Bayesian method for the calculation of probability distributions of single-exponential rates for any single-molecule process. These distributions can even be derived when no transitions from one state to another have been observed, since in that case the data can be used to estimate a lower bound on the rate. Using a Bayesian hypothesis test, one can easily test whether a transition occurs at the same rate or at different rates in two data sets.
View Article and Find Full Text PDFInfluenza virus attaches to and infects target cells via binding of cell-surface glycans by the viral hemagglutinin. This binding specificity is considered a major reason why avian influenza is typically poorly transmitted between humans, while swine influenza is better transmitted due to glycan similarity between the human and swine upper respiratory tract. Predicting mutations that control glycan binding is thus important to continued surveillance against new pandemic influenza strains.
View Article and Find Full Text PDFA Ru(bpy)(3)(2+) photosensitizer was covalently linked at specific sites on the interior or exterior surface of genetic constructs of a small heat shock protein cage nanoplatform and the light activated production of singlet oxygen was characterized.
View Article and Find Full Text PDFWe describe molecular dynamics simulations resulting in the folding the Fip35 Hpin1 WW domain. The simulations were run on a distributed set of graphics processors, which are capable of providing up to two orders of magnitude faster computation than conventional processors. Using the Folding@home distributed computing system, we generated thousands of independent trajectories in an implicit solvent model, totaling over 2.
View Article and Find Full Text PDFWe describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core.
View Article and Find Full Text PDFImplementation of molecular dynamics (MD) calculations on novel architectures will vastly increase its power to calculate the physical properties of complex systems. Herein, we detail algorithmic advances developed to accelerate MD simulations on the Cell processor, a commodity processor found in PlayStation 3 (PS3). In particular, we discuss issues regarding memory access versus computation and the types of calculations which are best suited for streaming processors such as the Cell, focusing on implicit solvation models.
View Article and Find Full Text PDFWe have performed molecular dynamics simulations on a set of nine unfolded conformations of the fastest-folding protein yet discovered, a variant of the villin headpiece subdomain (HP-35 NleNle). The simulations were generated using a new distributed computing method, yielding hundreds of trajectories each on a time scale comparable to the experimental folding time, despite the large (10,000 atom) size of the simulation system. This strategy eliminates the need to assume a two-state kinetic model or to build a Markov state model.
View Article and Find Full Text PDFThe hepatic and first-pass cytochrome P4503A (CYP3A) probe alfentanil (ALF) is also metabolized in vitro by CYP3A5. Human hepatic microsomal ALF metabolism is higher in livers with at least one CYP3A5*1 allele and higher CYP3A5 protein content, compared with CYP3A5*3 homozygotes with little CYP3A5. The influence of CYP3A5 genotype on ALF pharmacokinetics and pharmacodynamics was studied, and compared to midazolam (MDZ), another CYP3A probe.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2006
Exploring conformational spaces is still a challenging task for simulations of complex systems. One way to enhance such a task is weighted sampling, e.g.
View Article and Find Full Text PDFBackground: Methoxyflurane nephrotoxicity results from its metabolism, which occurs by both dechlorination (to methoxydifluoroacetic acid [MDFA]) and O-demethylation (to fluoride and dichloroacetic acid [DCAA]). Inorganic fluoride can be toxic, but it remains unknown why other anesthetics, commensurately increasing systemic fluoride concentrations, are not toxic. Fluoride is one of many methoxyflurane metabolites and may itself cause toxicity and/or reflect formation of other toxic metabolite(s).
View Article and Find Full Text PDFThe iron-storage protein ferritin encapsulates a nanoparticle of iron oxide. The size and properties of these nanoparticles can be adjusted by controlled oxidative hydrolysis reactions of Fe(II). This mineralized ferritin protein cage has previously been shown to act as an effective photocatalyst for reduction of Cr(VI).
View Article and Find Full Text PDF