This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1 and FeC-2 NPs, using seedless pods of. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations ofextract (ANE) on the electrochemical characteristics of the resulting n FeC-1 and FeC-2 electrodes.
View Article and Find Full Text PDFp-nitrophenol (pNP) is a highly toxic organic compound and is considered carcinogenic and mutagenic. It is a very stable compound with high resistance to chemical or biological degradation. As a result, the elimination of this pollutant has been very challenging for many researchers.
View Article and Find Full Text PDFNano-silica particles decorated with amine groups (S-DA) were prepared via a simple, one-pot method, and under very mild conditions in an attempt to improve the affinity of the silica nanoparticles toward capturing anionic organic dye, namely, methyl orange (MO). The prepared sample was characterized by different techniques such as XRD for crystallinity, SEM for morphological structure, TGA for thermal stability, BET surface area, and FTIR for surface functional groups. The prepared sample was tested for the removal of MO under different conditions including the mass of adsorbent, pH, initial concentration, and time.
View Article and Find Full Text PDFAmine modified nano-silica was prepared via a one-pot route and under very mild conditions in water in oil microemulsion with a non-ionic surfactant to study the effect of changing the amount of N-[3-(Trimethoxysilyl)propyl]ethylenediamine (DA) added to the synthesis mixture on the characteristics of the obtained nanocomposite such as morphology, crystallinity, surface charge, particle size, surface area, and accordingly the effect of all of these factors on the efficiency of the nanocomposite for the removal of heavy metal ions, namely zinc, from aqueous solutions. XRD, SEM, TGA, BET, DLS, FTIR, and pH analysis were performed for samples and the results showed a strong effect for the amount of DA added to the synthesis mixture on the characteristics of the obtained nanocomposites. It was found that increasing the amount of DA added to the synthesis mixture increased the pH, hydrodynamic particle size obtained by dynamic light scattering analysis, and the particle size obtained by SEM.
View Article and Find Full Text PDFThis work represents a novel combination between pods' extract and the hydrothermal method to prepare nanoparticles of pure zinc oxide and pure copper oxide and nanocomposites of both oxides in different ratios. Five samples were prepared with different ratios of zinc oxide and copper oxide; 100% ZnO (ZC0), 75% ZnO: 25% CuO (ZC25), 50% ZnO: 50% CuO (ZC50), 25% ZnO: 75% CuO (ZC75), and 100% CuO (ZC100). Several techniques have been applied to characterize the prepared powders as FTIR, XRD, SEM, and TEM.
View Article and Find Full Text PDFThe design and synthesis of eco-friendly solid-supported metal nanoparticles with remarkable stability and catalytic performance have gained much attention for both industrial and environmental applications. This study provides a novel, low-cost, simple, and eco-friendly approach for decorating cross-linked chitosan with gold nanoparticles (AuNPs), greenly prepared with () leaf extract under mild conditions. Glutaraldehyde-modified chitosan beads were used to coordinate with Au(III) ions and act as stabilizing agents, and leaf extract was used as a cost-effective phyto-reducing agent to reduce gold ions to elemental Au nanoparticles.
View Article and Find Full Text PDFIn this study Ag nanoparticles (AgNPs), ZnO nanoparticles (ZnONPs), and Ag/ZnO nanocomposites were greenly synthesized and loaded on activated carbon via three different routes: simple impregnation, successive precipitation, and co-precipitation. Neem leaf extract was used as a reducing and stabilizing agent. The morphological and structural properties of the synthesized nanocomposites have been examined using different analytical techniques such as XRD, SEM, FTIR, and UV.
View Article and Find Full Text PDFSurface composite design was used to study the effect of the ZnO synthesis conditions on its adsorption of methyl orange (MO) and methylene blue (MB). The ZnO was prepared via hydrothermal treatment under different conditions including temperature (T), precursor concentration (C), pH, and reaction time (t). Models were built using four Design expert-11 software-based responses: the point of zero charge (pHzc), MO and MB removal efficiencies (R, R), MO and MB adsorption capacities (q, q), and hydrodynamic diameter of ZnO particles (D).
View Article and Find Full Text PDFAdsorption of CO(2) was investigated on a series of primary, secondary, and tertiary monoamine-grafted pore-expanded mesoporous MCM-41 silicas, referred to as pMONO, sMONO, and tMONO, respectively. The pMONO adsorbent showed the highest CO(2) adsorption capacity, followed by sMONO, whereas tMONO exhibited hardly any CO(2) uptake. As for the stability in the presence of dry CO(2), we showed in a previous contribution [J.
View Article and Find Full Text PDF