Publications by authors named "Ensanya Ali Abou Neel"

Unlabelled: This study aimed to investigate the antibacterial [minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)] and antibiofilm activity [log10 colony forming unit/mL (CFU/mL) and biofilm disruption] of copper-doped phosphate glass (CDPG) against and .

Methods: the antibacterial activity was determined using microbroth dilution and time-kill assay. The antibiofilm activity was investigated using crystal violet and confocal laser scanning microscopy.

View Article and Find Full Text PDF

Purpose: Despite the good sealing ability and biocompatibility of mineral trioxide aggregate (MTA), its slow setting, high degradation, and weakness limit its use in surgical endodontics and high stress-bearing areas. This study aimed to develop two new liquids to control these drawbacks. They were prepared from calcium chloride, fumed silica, and hydroxyapatite or calcium phosphate and coded "H" and "P," respectively.

View Article and Find Full Text PDF

Regardless of the excellent properties of glass ionomer cements, their poor mechanical properties limit their applications to non-load bearing areas. This study aimed to investigate the effect of incorporated short, chopped and randomly distributed flax fibers (0, 0.5, 1, 2.

View Article and Find Full Text PDF

Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization.

View Article and Find Full Text PDF

Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations.

View Article and Find Full Text PDF

Introduction: Search for new, functional biomaterials that can be used to synergistically deliver a drug, enhance its adsorption and stimulate the post-injury recovery of tissue function, is one of the priorities in biomedicine. Currently used materials for drug delivery fail to satisfy one or more of these functionalities, thus they have limited potential and new classes of materials are urgently needed.

Areas Covered: Natural materials, due to their origin, physical and chemical structure can potentially fulfill these requirements and there is already strong evidence of their usefulness in drug delivery.

View Article and Find Full Text PDF

Objectives: of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry.

Data: The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.

View Article and Find Full Text PDF

The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs.

View Article and Find Full Text PDF

To significantly improve the biocompatibility of titanium doped phosphate based glasses, codoping with zinc has been attempted. This study investigated the effect of doping a quaternary 15Na(2)O:30CaO:5TiO(2):50P(2)O(5) glass with zinc oxide (1, 3, and 5 mol %) on bulk, structural, surface, and biological properties; the results were compared with glasses free from ZnO and/or TiO(2). ZnO as adjunct to TiO(2) was effective in changing density, interchain bond forces, degradation behavior, and ions released from the degrading glasses.

View Article and Find Full Text PDF

In this paper, the bioactive properties of Ni-Ti alloy after different surface treatments were evaluated in different media (Hanks' balanced salt solution, Dulbecco's modified Eagle's medium and osteogenic). Evaluation was performed on the basis of X-ray photoelectron spectroscopy and atomic force microscopy studies after immersing samples for up to 24h in the relevant media. This allowed assessment of the kinetics of Ca(2+) and P(5+) precipitation and early interaction of the media with surfaces.

View Article and Find Full Text PDF

There is an ingoing need for more effective and less costly bone substitute materials. In a previous study, addition of titanium dioxide (TiO2) up to 5 mol.% was shown to be effective in controlling glass degradation, and this was reflected in enhanced gene expression and bone-forming capacity of phosphate-based glasses.

View Article and Find Full Text PDF

In this paper, the suitability of alkali treatment followed by heat treatment at 600 degrees C, and spark oxidation for nickel-titanium, intended for medical applications such as pins, wires and clamps, was evaluated on the basis of nanomechanical and wear testing. In addition, the chemical composition and topography of the surface layer, wetting ability, corrosion resistance and influence of the heat treatment on structure of the alloy were also investigated. The results showed that the highest hardness was observed for alkali-treated samples, and this could be correlated with the structure of the sample that contained martensite and a higher phase transformation temperature.

View Article and Find Full Text PDF

Bulk and structural properties of zinc oxide (0 up to 20 mol%) containing phosphate glasses, developed for biomedical applications, were investigated throughout this study using differential thermal analysis (DTA), differential scanning calorimetry, X-ray powder diffraction and 31P and 23Na MAS NMR. Surface wettability and MG63 viability were also considered for surface characterisation of these glasses. The results indicated that incorporation of zinc oxide as a dopant into phosphate glasses produced a significant increase in density; however, the thermal properties presented in glass transition, and melting temperatures were reduced.

View Article and Find Full Text PDF

In our previous study, glasses with 50 P(2)O(5)-(20-15) Na(2)O-30 CaO-(0-5 mol%) TiO(2) have been prepared by the conventional melt-quenching process. MG63 cell proliferation, gene expression, in vivo biocompatibility, and bioactivity of these glasses is the concern of this study. The results showed that addition of TiO(2) in small amounts up to 5 mol% enhanced the biocompatibility of these glasses.

View Article and Find Full Text PDF