Complementary resource use by functionally different species may accelerate ecosystem processes. However, how co-variation in plant traits and animal traits promotes complementarity through temporal plant-animal interactions is poorly understood, even less so in detrital systems, thereby hampering our fundamental understanding of decomposition and carbon turnover. We hypothesised that, in seasonal subtropical forests where termites are major deadwood decomposers, trait complementarity of both termite species and tree species should promote overall deadwood decomposition through different seasons and years.
View Article and Find Full Text PDFPlant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e.
View Article and Find Full Text PDFEvidence is mounting that vertebrate defaunation greatly impacts global biogeochemical cycling. Yet, there is no comprehensive assessment of the potential vertebrate influence over plant decomposition, despite litter decay being one of the largest global carbon fluxes. We therefore conducted a global meta-analysis to evaluate vertebrate effects on litter mass loss and associated element release across terrestrial and aquatic ecosystems.
View Article and Find Full Text PDFA priority research field addresses how to optimize diverse ecosystem services to people, including biodiversity support, regulatory, utilitarian and cultural services. This field may benefit from linking ecosystem services to the sizes of different body parts of organisms, with functional traits as the go-between. Using woody ecosystems to explore such linkages, we hypothesize that across stem diameter classes from trunk via branches to twigs, key wood and bark functional traits (especially those defining size-shape and resource economics spectra) vary both within individual trees and shrubs and across woody species, thereby together boosting ecosystem multifunctionality.
View Article and Find Full Text PDFThe plant economics spectrum integrates trade-offs and covariation in resource economic traits of different plant organs and their consequences for pivotal ecosystem processes, such as decomposition. However, in this concept stems are often considered as one unit ignoring the important functional differences between wood (xylem) and bark. These differences may not only affect the performance of woody plants during their lifetime, but may also have important "afterlife effects.
View Article and Find Full Text PDFRecent studies show coordinated relationships between plant leaf traits and their capacity to predict ecosystem functions. However, how leaf traits will change within species and whether interspecific trait relationships will shift under future environmental changes both remain unclear. Here, we examine the bivariate correlations between leaf economic traits of 515 species in 210 experiments which mimic climate warming, drought, elevated CO, and nitrogen deposition.
View Article and Find Full Text PDFFront Plant Sci
February 2020
Intraspecific trait variation (ITV) is common feature of natural communities and has gained increasing attention due to its significant ecological effects on community dynamics and ecosystem functioning. However, the estimation of ITV has yet to receive much attention, despite the need for accurate ITV estimation for trait-based ecological inferences. It remains unclear if, and to what extent, current estimations of ITV are biased.
View Article and Find Full Text PDFStem xylem-specific hydraulic conductivity (K ) represents the potential for plant water transport normalized by xylem cross section, length, and driving force. Variation in K has implications for plant transpiration and photosynthesis, growth and survival, and also the geographic distribution of species. Clarifying the global-scale patterns of K and its major drivers is needed to achieve a better understanding of how plants adapt to different environmental conditions, particularly under climate change scenarios.
View Article and Find Full Text PDFSpecies with large intraspecific trait variability (ITV) have larger niche breadth than species with low ITV and thus are expected to be more abundant at the local scale. However, whether the positive ITV-abundance relationship holds in heterogeneous local environments remains uncertain. Using an individual-based trait dataset encompassing three leaf traits (leaf area, specific leaf area, and leaf dry mass content) of 20,248 individuals across 80 species in an environmentally heterogeneous subtropical forest in eastern China, ITV for each trait of each species was estimated by rarefaction.
View Article and Find Full Text PDFForest succession is a central ecological topic due to the importance of its dynamic process for terrestrial ecosystems. However, we have limited knowledge of the relationship between forest succession and belowground microbiota, particularly regarding interactions in the rhizosphere. Here, we determined microbial community structure and biomass using phospholipid fatty acid (PLFA) biomarkers and microbial activity using extracellular enzyme activity in bulk and rhizosphere soils from three successional stages of subtropical forests in eastern China.
View Article and Find Full Text PDFPremise Of Study: The plant size-trait relationship is a fundamental dimension in the spectrum of plant form and function. However, it remains unclear whether the trait scaling relationship within species is modified by tree size. Investigating size-dependent trait covariations within species is crucial for understanding the ontogenetic constraints on the intraspecific economic spectrum and, more broadly, the structure and causes of intraspecific trait variations.
View Article and Find Full Text PDFThe importance of intraspecific trait variability (ITV) to the spatial distribution of individual species is unclear. We hypothesized that intraspecific trait dispersions underlying niche processes deviate more from null model expectations, by reducing their spread (range and variance), kurtosis, and standard deviation of near-neighbor distance, for species with aggregated than those with random distributions. The link between species' spatial distributions and ITV patterns was examined using an individual tree-based trait data set, in which specific leaf area, mean leaf area, leaf dry matter content, and diameter at breast height were measured for 18,773 stems of 45 species in a 4.
View Article and Find Full Text PDFThe plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China.
View Article and Find Full Text PDFSubtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e.
View Article and Find Full Text PDFScaling relationships among twig size, leaf size and leafing intensity fundamentally influence the twig-leaf deployment pattern, a property that affects the architecture and functioning of plants. However, our understanding of how these relationships change within a species or between species as a function of forest succession is unclear. We determined log-log scaling relationships between twig cross-sectional area (twig size) and each of total and individual leaf area, and leafing intensity (the number of leaves per twig volume) for 78 woody species along a successional series in subtropical evergreen forests in eastern China.
View Article and Find Full Text PDFUnderstanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
December 2012
Evaluating the frost-resistance of evergreen woody plants is of significance in guiding the species selection in forest management in subtropical region. In this paper, an investigation was made on the functional traits (including specific leaf area, stem wood density, leaf area, leaf dry matter content, leaf relative electrical conductance, and twig wood density) of 64 common evergreen broad-leaved and coniferous woody plant species in the Ningbo region of Zhejiang Province, East China, after a severe snowstorm in early 2008, aimed to select the evergreen woody plants with high ability of freeze-tolerance, and to establish a related evaluation system. By using a hierarchy analysis approach, the weight values of the functional traits of each species were determined, and an index system for evaluating the plants tolerance ability against freeze and mechanical damage was established.
View Article and Find Full Text PDFSprouting is an efficient regeneration means of woody plants to regain their biomass loss after disturbances. This paper reviewed the biological characteristics of sprouting, and its consequences on woody plants individual life history, dynamics of population and community, and biogeography. Many achievements have been obtained on the researches of sprouting strategy and its relationships with disturbances, but less is known about the ecological significances of sprouting, and especially, its effects on the structure and dynamics of woody plants population and community.
View Article and Find Full Text PDF