Clin Biomech (Bristol)
December 2024
Background: Normal dorsiflexion of the first metatarsophalangeal joint during dynamic activities is critical for effective propulsion. Therapeutic foot orthotics may address the pathomechanical loading and joint kinematics issues faced by this population. This study aims to evaluate the effect of two different types of Custom-made foot orthosis compared to shod condition on the stiffness of the rearfoot, midfoot, and 1st metatarsophalangeal joint during walking in patients with Structural Hallux Limitus.
View Article and Find Full Text PDFThis dataset presents human foot joints kinematics and kinetics data during walking, classified by static foot posture, filling a gap in existing lower limb databases that lack data on foot joints beyond the ankle or on static posture data, despite its link to foot and lower limb pathologies. Kinematics were recorded using a three-dimensional mocap system, and kinetics through a pressure platform, employing a multi-segment foot model including the ankle, midtarsal and first metatarsophalangeal joint. The dataset contains 350 recordings of right foot joint angles and moments and contact pressures from 70 healthy subjects with varying static posture (highly pronated, highly supinated and normal).
View Article and Find Full Text PDFThe first metatarsophalangeal joint (MTPJ) and the first ray are crucial in walking, particularly during propulsion. Limitation in this joint's sagittal plane motion, known as hallux limitus, can cause compensatory movements in other joints. Some studies assessed the impact of various foot orthoses designs on the foot biomechanics; however, a comprehensive understanding is lacking.
View Article and Find Full Text PDFIn-shoe models are required to extend the clinical application of current multisegment kinetic models of the bare foot to study the effect of foot orthoses. Work to date has only addressed marker placement for reliable kinematic analyses. The purpose of this study is to address the difficulties of recording contact forces with available sensors.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2022
The purpose was to assess the effects of three interventions on bone mineral density (BMD) to prevent the onset or progression of osteoporosis in postmenopausal women. Specifically, thirty-nine postmenopausal women, diagnosed with osteopenia or osteoporosis, implemented either high-impact training (G1), the same training + calcium and vitamin D intake (G2), or walked at an intense pace + calcium and vitamin D (G3). Baseline change (BC) in BMD was estimated using the femoral neck and lumbar spine T-scores.
View Article and Find Full Text PDFBackground: Comparison of dynamic stiffness of foot joints was previously proposed to investigate pathologic situations with changes in the properties of muscle and passive structures. Samples must be controlled to reduce the variability within groups being compared, which may arise from different sources, such as gait speed or Foot Posture Index (FPI).
Methods: Variability in the measurement of the dynamic stiffness of ankle, midtarsal, and metatarsophalangeal joints was studied in a controlled sample of healthy men with normal FPI, and the effect of gait speed was analyzed.
Background: Dynamic stiffness can be used for studying foot pathologic abnormalities and for developing prostheses and orthoses. Although previous works have studied the role of ankle joint stiffness during gait, other foot joints have not yet been analyzed. We sought to characterize the dynamic stiffness of the ankle, midtarsal, and metatarsophalangeal joints during normal walking.
View Article and Find Full Text PDF