Determining the flow regime of non-perennial rivers is critical in hydrology. In this study, we developed a new approach using CubeSat imagery to detect streamflow presence using differences in surface reflectance for areas within and outside of a river reach. We calibrated the approach with streamflow records in the Hassayampa River of Arizona over 3 years (2019-2021), finding good agreement in the annual fractions of flowing days at stream gages ( = 0.
View Article and Find Full Text PDFBackground: In arid and semiarid shrublands, water availability directly influences ecosystem properties. However, few empirical tests have determined the association between particular soil and hydrology traits with biodiversity and ecosystem biomass at the local scale.
Methods: We tested if plant species richness (S) and aboveground biomass (AGB) were associated with soil and topographic properties on 36 plots (ca.
Woody plant encroachment (WPE) into grasslands is a global phenomenon that is associated with land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains uncertain how the global processes of WPE and climate change may combine to impact water availability for ecosystems. Using a process-based model constrained by watershed observations, our results suggest that both xerification and climate change augment groundwater recharge by increasing channel transmission losses at the expense of plant available water.
View Article and Find Full Text PDFUrbanization modifies land surface characteristics with consequent impacts on local energy, water, and carbon dioxide (CO2) fluxes. Despite the disproportionate impact of cities on CO2 emissions, few studies have directly quantified CO2 conditions for different urban land cover patches, in particular for arid and semiarid regions. Here, we present a comparison of eddy covariance measurements of CO2 fluxes (FC) and CO2 concentrations ([CO2]) in four distinct urban patches in Phoenix, Arizona: a xeric landscaping, a parking lot, a mesic landscaping, and a suburban neighborhood.
View Article and Find Full Text PDFSurface soil moisture plays a crucial role on the terrestrial water, energy, and carbon cycles. Characterizing its variability in space and time is critical to increase our capability to forecast extreme weather events, manage water resources, and optimize agricultural practices. Global estimates of surface soil moisture are provided by satellite sensors, but at coarse spatial resolutions.
View Article and Find Full Text PDFOne of the most pressing global challenges for sustainable development is freshwater management. Sustainable water governance requires interdisciplinary knowledge about environmental and social processes as well as participatory strategies that bring scientists, managers, policymakers, and other stakeholders together to cooperatively produce knowledge and solutions, promote social learning, and build enduring institutional capacity. Cooperative production of knowledge and action is designed to enhance the likelihood that the findings, models, simulations, and decision support tools developed are scientifically credible, solutions-oriented, and relevant to management needs and stakeholders' perspectives.
View Article and Find Full Text PDFEarth systems models require gridded land surface properties to compute fluxes of water, energy, and carbon within the landscape and to the atmosphere. However, most parameter sets contain time-invariant properties despite their known variability. Here we present new MODerate Resolution Imaging Spectroradiometer (MODIS)-based land surface parameters (MOD-LSP) formatted for the Variable Infiltration Capacity (VIC) hydrologic model that account for seasonal and interannual variability and longer-term change over the continental United States, Mexico, and southern Canada at 0.
View Article and Find Full Text PDFIn a study by Murray and Lohman (M&L), the authors suggest that remote sensing data are useful for monitoring land subsidence due to aquifer system compaction. We agree. To infer aquifer dynamics, we provide a more detailed and joint analysis of deformation and groundwater data.
View Article and Find Full Text PDFMediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds.
View Article and Find Full Text PDFThe discharge of untreated or poorly treated wastewater to river systems remains a major problem affecting public and environmental health, particularly in rural communities of less developed countries. One of the primary goals in setting policies for wastewater management is to reduce risks to human health associated with microbial contamination of receiving water. In this study, we apply a surface water quality model to develop an Escherichia coli based indicator that reflects the quality of surface water and the potential impact to recreational users in a large, rural river in northwest Mexico (upper Sonora River).
View Article and Find Full Text PDF