Cells
August 2024
Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections.
View Article and Find Full Text PDFThe treatment of spinal cord injury (SCI) with uncultivated human bone marrow-derived stromal cells (bmSCs) prepared by negative selection has been proposed to be therapeutically superior to treatment with stem cells that were expanded in vitro. To explore their use in clinical trials, we studied the functional effects of delayed application at 7 days after SCI by testing different doses of bmSCs. Spinal cord contusion injury was induced in adult male Wistar rats at the thoracic level T9.
View Article and Find Full Text PDFStudy Design: Descriptive study with cross-sectional data collection.
Objectives: To analyse and compare the 3D kinematics and kinetics of thorax, elbow and wrist, and the spatio-temporal parameters during swing-through gait (SG) and reciprocal gait (RG).
Setting: Hospital Nacional de Parapléjicos in Toledo, Spain.
IEEE Trans Neural Syst Rehabil Eng
December 2020
We propose a point-mass biomechanical model to estimate the forces and moments supported by the upper extremity during Lofstrand crutch-assisted gait. This model is based on the Newtonian classical mechanics and the angular momentum theorem. The system arm-crutch is divided into three segments: 1) crutch, 2) wrist-elbow, and 3) elbow-shoulder.
View Article and Find Full Text PDFBackground: Specific biomechanical models have been developed to study gait using crutches. Clinical application of these models is needed in adult spinal cord injury (SCI) population walking with different patterns of gait with crutches to prevent overuse shoulder injuries.
Objective: To apply a biomechanical model in a clinical environment to analyze shoulder in adult SCI patients walking with two different patterns of gait with crutches: two point reciprocal gait (RG) and swing-through gait (SG).
Manual wheelchair users with spinal cord injury (SCI) have a high prevalence of shoulder pain due to the use of the upper extremity for independent mobility, transfers, and other activities of daily living. Indeed, shoulder pain dramatically affects quality of life of these individuals. There is limited evidence obtained through radiographic techniques of a relationship between the forces acting on the shoulder during different propulsion conditions and shoulder pathologies.
View Article and Find Full Text PDFPurpose: This is a pilot study with the aim to highlight the use of kinematic and kinetic analyses as an adjunct to the assessment of individual patients with central cord syndrome (CCS) and hemisection or Brown-Séquard syndrome (BSS) and to discuss their possible consequences for clinical management.
Methods: The sample studied consisted of 17 patients with CCS, 13 with BSS and 20 control subjects (control group (CG)). Data were obtained using a three-dimensional motion analysis system and two force plates.
Background: Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed.
View Article and Find Full Text PDFBackground: Three-dimensional kinematic analysis equipment is a valuable instrument for studying the execution of movement during functional activities of the upper limbs. The aim of this study was to analyze the kinematic differences in the execution of a daily activity such as drinking from a glass between two groups of patients with tetraplegia and a control group.
Methods: A total of 24 people were separated into three groups for analysis: 8 subjects with metameric level C6 tetraplegia, 8 subjects with metameric level C7 tetraplegia and 8 control subjects (CG).
The purpose of this study was to compare the forces and moments of the whole upper limb, analyzing forces and moments at the shoulder, elbow and wrist joints simultaneously during manual wheelchair propulsion of persons with different levels of spinal cord injury (SCI) on a treadmill. Fifty-one people participated in this study and were grouped by their level of SCI: C6 tetraplegia (G1), C7 tetraplegia (G2), high paraplegia (G3), and low paraplegia (G4). An inverse dynamic model was defined to compute net joint forces and moments from segment kinematics, the forces acting on the pushrim, and subject anthropometrics.
View Article and Find Full Text PDF