In this article, we present an effective continuum model for a Weyl semimetal, to calculate its thermal and thermoelectric transport coefficients in the presence of a uniform concentration of torsional dislocations. We model each dislocation as a cylindrical region of finite radius , where the corresponding elastic strain is described as a gauge field leading to a local pseudo-magnetic field. The transport coefficients are obtained by a combination of scattering theory, Green's functions and the Kubo formulae in the linear response regime.
View Article and Find Full Text PDFPurpose: To evaluate whether the Centiloid Scale may be used to diagnose Alzheimer's Disease (AD) pathology effectively with the only use of amyloid PET imaging modality from a brain-dedicated PET scanner.
Methods: This study included 26 patients with amyloid PET images with 3 different radiotracers. All patients were acquired both on a PET/CT and a brain-dedicated PET scanner (CareMiBrain, CMB), from which 4 different reconstructions were implemented.
As part of a clinical validation of a new brain-dedicated PET system (CMB), image quality of this scanner has been compared to that of a whole-body PET/CT scanner. To that goal, Hoffman phantom and patient data were obtined with both devices. Since CMB does not use a CT for attenuation correction (AC) which is crucial for PET images quality, this study includes the evaluation of CMB PET images using emission-based or CT-based attenuation maps.
View Article and Find Full Text PDFThe transport properties of commercial carbon nanofibers (CNFs) produced by chemical vapor deposition (CVD) depend on the various conditions used during their growth and post-growth synthesis, which also affect their derivate CNF-based textile fabrics. Here, the production and thermoelectric (TE) properties of cotton woven fabrics (CWFs) functionalized with aqueous inks made from different amounts of pyrolytically stripped (PS) Pyrograf III PR 25 PS XT CNFs via dip-coating method are presented. At 30 °C and depending on the CNF content used in the dispersions, the modified textiles show electrical conductivities (σ) varying between ~5 and 23 S m with a constant negative Seebeck coefficient (S) of -1.
View Article and Find Full Text PDFBackground: The characterization and research around the gut microbiome in older people emphasize microbial populations change considerably by losing the diversity of species. Then, this review aims to determine if there is any effect on the gut microbiota of adults older than 65 that starts an exercise intervention or improves physical activity level. Also, this review describes the changes in composition, diversity, and function of the gut microbiota of older subjects that had improved their physical activity level.
View Article and Find Full Text PDFGiven the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study 'Cuido mi embarazo'. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose.
View Article and Find Full Text PDFThe thermoelectric properties, at temperatures from 30 °C to 100 °C, of melt-processed poly(ether ether ketone) (PEEK) composites prepared with 10 wt.% of carbon nanofibers (CNFs) are discussed in this work. At 30 °C, the PEEK/CNF composites show an electrical conductivity (σ) of ~27 S m and a Seebeck coefficient (S) of -3.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2022
Study of the strongly correlated states in van der Waals heterostructures is one of the central topics in modern condensed matter physics. Among these, the rhombohedral trilayer graphene (RTG) occupies a prominent place since it hosts a variety of interaction-driven phases, with the metallic ones yielding exotic superconducting orders upon doping. Motivated by these experimental findings, we show within the framework of the low-energy Dirac theory that the optical conductivity can distinguish different candidates for a paramagnetic metallic ground state in this system.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2022
In this article, we consider a theoretical model for a type I Weyl semimetal, under the presence of a diluted uniform concentration of torsional dislocations. By means of a mathematical analysis for partial wave scattering (phase-shift) for the T-matrix, we obtain the corresponding retarded and advanced Green's functions that include the effects of multiple scattering events with the ensemble of randomly distributed dislocations. Combining this analysis with the Kubo formalism, and including vertex corrections, we calculate the electronic conductivity as a function of temperature and concentration of dislocations.
View Article and Find Full Text PDFStudy the performance of a spectral reconstruction method for Compton imaging of polychromatic sources and compare it to standard Compton reconstruction based on the selection of photopeak events.The proposed spectral and the standard photopeak reconstruction methods are used to reconstruct images from simulated sources emitting simultaneously photons of 140, 245, 364 and 511 keV. Data are simulated with perfect and realistic energy resolutions and including Doppler broadening.
View Article and Find Full Text PDFThe temperature dependent electrical conductivity () and thermopower (Seebeck coefficient) () from 303.15 K (30 °C) to 373.15 K (100 °C) of an as-received commercial n-type vapour grown carbon nanofibre (CNF) powder and its melt-mixed polypropylene (PP) composite with 5 wt.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
Herein, we study electronic and thermoelectric transport in a type I Weyl semimetal nanojunction, with a torsional dislocation defect, in the presence of an external magnetic field parallel to the dislocation axis. The defect is modeled in a cylindrical geometry, as a combination of a gauge field accounting for torsional strain and a delta-potential barrier for the lattice mismatch effect. In the Landauer formalism, we find that due to the combination of strain and magnetic field, the electric current exhibits chiral valley-polarization, and the conductance displays the signature of Landau levels.
View Article and Find Full Text PDFThe applicability extent of hadron therapy for tumor treatment is currently limited by the lack of reliable online monitoring techniques. An active topic of investigation is the research of monitoring systems based on the detection of secondary radiation produced during treatment. MACACO, a multi-layer Compton camera based on LaBr scintillator crystals and SiPMs, is being developed at IFIC-Valencia for this purpose.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2021
Chemical sensors with high sensitivity that can be used under extreme conditions and can be miniaturized are of high interest in science and industry. The nitrogen-vacancy (NV) center in diamond is an ideal candidate as a nanosensor due to the long coherence time of its electron spin and its optical accessibility. In this theoretical work, we propose the use of an NV center to detect electrochemical signals emerging from an electrolyte solution, thus obtaining a concentration sensor.
View Article and Find Full Text PDFIntroduction: The prognosis of pancreatic ductal adenocarcinoma has been associated with several factors. The aim of the present study was to correlate tumor-related factors and pathological findings with disease-free survival (DFS) and overall survival (OS) in patients undergoing pancreaticoduodenectomy.
Material And Methods: From a prospectively maintained database, we reviewed 89 pancreatic ductal adenocarcinomas in patients who underwent pancreaticoduodenectomy from 2010 to 2014.
One factor limiting the current applicability extent of hadron therapy is the lack of a reliable method for real time treatment monitoring. The use of Compton imaging systems as monitors requires the correct reconstruction of the distribution of prompt gamma productions during patient irradiation. In order to extract the maximum information from all the measurable events, we implemented a spectral reconstruction method that assigns to all events a probability of being either partial or total energy depositions.
View Article and Find Full Text PDFSensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals.
View Article and Find Full Text PDFGiven the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype.
View Article and Find Full Text PDFWe studied the non-equilibrium current, transport coefficients and thermoelectric performance of a nano-junction, composed by a quantum dot connected to a normal superconductor and a topological superconductor leads, respectively. We considered a one-dimensional topological superconductor, which hosts two Majorana fermion states at its edges. Our results show that the electric and thermal currents across the junction are highly mediated by multiple Andreev reflections between the quantum dot and the leads, thus leading to a strong nonlinear dependence of the current on the applied bias voltage.
View Article and Find Full Text PDFIn a recent paper (Muñoz and Soto-Garrido 2017 J. Phys.: Condens.
View Article and Find Full Text PDFWe consider the problem of particle tunneling through a periodically driven ferromagnetic quantum barrier connected to two leads. The barrier is modeled by an impurity site representing a ferromagnetic layer or a quantum dot in a tight-binding Hamiltonian with a local magnetic field and an ac-driven potential, which is solved using the Floquet formalism. The repulsive interactions in the quantum barrier are also taken into account.
View Article and Find Full Text PDFChronic pancreatitis is defined as a pathological fibro-inflammatory syndrome of the pancreas in individuals with genetic, environmental and/or other risk factors who develop persistent pathological responses to parenchymal injury or stress. Potential causes can include toxic factors (such as alcohol or smoking), metabolic abnormalities, idiopathic mechanisms, genetics, autoimmune responses and obstructive mechanisms. The pathophysiology of chronic pancreatitis is fairly complex and includes acinar cell injury, acinar stress responses, duct dysfunction, persistent or altered inflammation, and/or neuro-immune crosstalk, but these mechanisms are not completely understood.
View Article and Find Full Text PDFWe consider the scattering of Dirac particles in graphene due to the superposition of an external magnetic field and mechanical strain. As a model for a graphene nanobubble, we find exact analytical solutions for single-particle states inside and outside a circular region submitted to the fields. Finally, we obtain analytical expressions for the scattering cross-section, as well as for the Landauer current through the circular region.
View Article and Find Full Text PDF