Actin is essential for the survival and pathogenicity of the Apicomplexan parasite Toxoplasma gondii, where it plays essential functions in cargo transport, invasion, egress, and organelle inheritance. Recent work has shown that, unlike vertebrate skeletal muscle actin, purified T. gondii actin filaments (TgAct1) can undergo rapid treadmilling, due to large differences in the barbed- and pointed-end critical concentrations, rapid subunit dissociation from filament ends, and a rapid nucleotide exchange rate constant from free monomers.
View Article and Find Full Text PDFActin filament assembly and the regulation of its mechanical properties are fundamental processes essential for eukaryotic cell function. Residue E167 in vertebrate actins forms an inter-subunit salt bridge with residue K61 of the adjacent subunit. Saccharomyces cerevisiae actin filaments are more flexible than vertebrate filaments and have an alanine at this position (A167).
View Article and Find Full Text PDFEctonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature.
View Article and Find Full Text PDFArp2/3 complex nucleates branched actin filaments for cell and organelle movements. Here we report a 2.7 Å resolution cryo-EM structure of the mature branch junction formed by S.
View Article and Find Full Text PDFThe cytoskeletal protein actin plays a critical role in the pathogenicity of the intracellular parasite, Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there are conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length.
View Article and Find Full Text PDFCofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short, unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but specific aspects driving this conservation are unclear.
View Article and Find Full Text PDFThe organization of actin filaments (F-actin) into crosslinked networks determines the transmission of mechanical stresses within the cytoskeleton and subsequent changes in cell and tissue shape. Principally mediated by proteins such as α-actinin, F-actin crosslinking increases both network connectivity and rigidity, thereby facilitating stress transmission at low crosslinking yet attenuating transmission at high crosslinker concentration. Here, we engineer a two-dimensional model of the actomyosin cytoskeleton, in which myosin-induced mechanical stresses are controlled by light.
View Article and Find Full Text PDFCooperative ligand binding to linear polymers is fundamental in many scientific disciplines, particularly biological and chemical physics and engineering. Such ligand binding interactions have been widely modeled using infinite one-dimensional (1D) Ising models even in cases where the linear polymers are more complex (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
The shape of cells is the outcome of the balance of inner forces produced by the actomyosin network and the resistive forces produced by cell adhesion to their environment. The specific contributions of contractile, anchoring and friction forces to network deformation rate and orientation are difficult to disentangle in living cells where they influence each other. Here, we reconstituted contractile actomyosin networks in vitro to study specifically the role of the friction forces between the network and its anchoring substrate.
View Article and Find Full Text PDFThe cytoskeletal protein actin plays a critical role in the pathogenicity of , mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there is conflicting data regarding the biochemical and biophysical properties of actin. Here, we imaged the assembly of individual actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length.
View Article and Find Full Text PDFCofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but the aspects of cofilin functionality driving this conservation are not clear.
View Article and Find Full Text PDFWave-like beating of eukaryotic cilia and flagella-threadlike protrusions found in many cells and microorganisms-is a classic example of spontaneous mechanical oscillations in biology. This type of self-organized active matter raises the question of the coordination mechanism between molecular motor activity and cytoskeletal filament bending. Here we show that in the presence of myosin motors, polymerizing actin filaments self-assemble into polar bundles that exhibit wave-like beating.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Actin cytoskeleton force generation, sensing, and adaptation are dictated by the bending and twisting mechanics of filaments. Here, we use magnetic tweezers and microfluidics to twist and pull individual actin filaments and evaluate their response to applied loads. Twisted filaments bend and dissipate torsional strain by adopting a supercoiled plectoneme.
View Article and Find Full Text PDFThe DEAD-box protein Dbp5 is essential for RNA export, which involves regulation by the nucleoporins Gle1 and Nup159 at the cytoplasmic face of the nuclear pore complex (NPC). Mechanistic understanding of how these nucleoporins regulate RNA export requires analyses of the intrinsic and activated Dbp5 ATPase cycle. Here, kinetic and equilibrium analyses of the Saccharomyces cerevisiae Gle1-activated Dbp5 ATPase cycle are presented, indicating that Gle1 and ATP, but not ADP-Pi or ADP, binding to Dbp5 are thermodynamically coupled.
View Article and Find Full Text PDFThe primary cilium is an essential organizing center for signal transduction, and ciliary defects cause congenital disorders known collectively as ciliopathies. Primary cilia form by two pathways that are employed in a cell-type- and tissue-specific manner: an extracellular pathway in which the cilium grows out from the cell surface and an intracellular pathway in which the nascent cilium first forms inside the cell. After exposure to the external environment, cilia formed via the intracellular pathway may have distinct functional properties, as they often remain recessed within a ciliary pocket.
View Article and Find Full Text PDFCofilin is an essential actin filament severing protein that accelerates the assembly dynamics and turnover of actin networks by increasing the number of filament ends where subunits add and dissociate. It binds filament subunits stoichiometrically and cooperatively, forming clusters of contiguously-bound cofilin at sub-saturating occupancies. Filaments partially occupied with cofilin sever at boundaries between bare and cofilin-decorated segments.
View Article and Find Full Text PDFMembers of the ADF/cofilin family of regulatory proteins bind actin filaments cooperatively, locally change actin subunit conformation and orientation, and sever filaments at "boundaries" between bare and cofilin-occupied segments. A cluster of bound cofilin introduces two distinct classes of boundaries due to the intrinsic polarity of actin filaments, one at the "pointed" end side and the other at the "barbed" end-side of the cluster; severing occurs more readily at the pointed end side of the cluster ("fast-severing" boundary) than the barbed end side ("slow-severing" boundary). A recent electron-cryomicroscopy (cryo-EM) model of the slow-severing boundary revealed structural "defects" at the interface that potentially contribute to severing.
View Article and Find Full Text PDFEnzyme replacement with ectonucleotide pyrophosphatase phospodiesterase-1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three-prong strategy. First, we added new N-glycans to ENPP1; second, we optimized pH-dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two-step process to improve sialylation by first producing ENPP1-Fc in cells stably transfected with human α-2,6-sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4-O-Bu ManNAc.
View Article and Find Full Text PDFNetworks of branched actin filaments formed by Arp2/3 complex generate and experience mechanical forces during essential cellular functions, including cell motility and endocytosis. External forces regulate the assembly and architecture of branched actin networks both in vitro and in cells. Considerably less is known about how mechanical forces influence the disassembly of actin filament networks, specifically, the dissociation of branches.
View Article and Find Full Text PDFCofilin and ADF are cytoskeleton remodeling proteins that cooperatively bind and fragment actin filaments. Bound cofilin molecules do not directly interact with each other, indicating that cooperative binding of cofilin is mediated by the actin filament lattice. Cofilactin is therefore a model system for studying allosteric regulation of self-assembly.
View Article and Find Full Text PDFThe fracture and severing of polymer chains plays a critical role in the failure of fibrous materials and the regulated turnover of intracellular filaments. Using continuum wormlike chain models, we investigate the fracture of semiflexible polymers via thermal bending fluctuations, focusing on the role of filament flexibility and dynamics. Our results highlight a previously unappreciated consequence of mechanical heterogeneity in the filament, which enhances the rate of thermal fragmentation particularly in cases where constraints hinder the movement of the chain ends.
View Article and Find Full Text PDFMembers of the cofilin/ADF family of proteins sever actin filaments, increasing the number of filament ends available for polymerization or depolymerization. Cofilin binds actin filaments with positive cooperativity, forming clusters of contiguously bound cofilin along the filament lattice. Filament severing occurs preferentially at boundaries between bare and cofilin-decorated (cofilactin) segments and is biased at 1 side of a cluster.
View Article and Find Full Text PDFThe assembly of actin filaments and filament networks generate forces that drive cell and vesicle movement. These structures and the comprising actin filaments must be mechanically stable to sustain these forces and maintain their structural integrity. Filaments in these dynamic structures must also be disassembled to recycle and replenish the pool of actin monomers available for polymerization.
View Article and Find Full Text PDFCytoskeletal filaments assemble into dense parallel, antiparallel, or disordered networks, providing a complex environment for active cargo transport and positioning by molecular motors. The interplay between the network architecture and intrinsic motor properties clearly affects transport properties but remains poorly understood. Here, by using surface micropatterns of actin polymerization, we investigate stochastic transport properties of colloidal beads in antiparallel networks of overlapping actin filaments.
View Article and Find Full Text PDF