A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2013
The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water.
View Article and Find Full Text PDFBone grafting is often required to restore mandibular or maxillary bone volume prior to prosthetic tooth root implantation. Preclinical animal models are often used to study the in vivo properties of new bone graft products designed for human use. Although animal studies may offer valuable data regarding bioperformance, materials do not necessarily perform the same in human patients.
View Article and Find Full Text PDFBrushite-based biomaterials are of special interest in bone regeneration due to their biocompatibility and biodegradability; on the other hand, collagen is a well-known osteoconductive biomaterial. In the present study a new brushite-collagen composite biomaterial is reported. This new biomaterial was prepared by combining citric acid/collagen type I solutions with a brushite cement powder.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2007
In this study we have compared the effect of using acetic, glycolic, and citric acids on the brushite cement setting reaction and the properties of the resultant cement. The cement solid phase was made by mixing beta-tricalcium phosphate (beta-TCP), monocalcium dihydrogen phosphate anhydrate (MCPA), and sodium pyrophosphate, whereas the cement liquid phase consisted of aqueous solutions of carboxy acids at concentrations ranging from 0.5 to 3.
View Article and Find Full Text PDF