Publications by authors named "Enrique Hernandez-Gonzalez"

Isthmus is the region of the oviduct considered a reservoir for spermatozoa, where they are retained and released synchronously with ovulation. Integrins mediate this interaction, and it is suggested that they regulate the viability and capacitation of spermatozoa. Spermatozoa retained in the oviductal epithelial cells show specific characteristics: normal morphology, intact acrosome and plasma membrane, no DNA fragmentation, and low levels of intracellular Ca2+, and protein phosphorylation at Tyr.

View Article and Find Full Text PDF

Capacitation is a series of physiological, biochemical, and metabolic changes experienced by mammalian spermatozoa. These changes enable them to fertilize eggs. The capacitation prepares the spermatozoa to undergo the acrosomal reaction and hyperactivated motility.

View Article and Find Full Text PDF

Sperm hyperactivation is described as a fast whip movement of the flagellum, an irregular trajectory, and an asymmetrically flagellum bend. This motility pattern is achieved during the passage of the sperm along the female genital tract. It helps the spermatozoa to cross through different viscous ambient fluids to finally reach the oocyte.

View Article and Find Full Text PDF

Spermatozoa require the capacitation, a series of biochemical events, to perform fertilization. Many toxic compounds can interfere in this process, including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which belong to the perfluoroalkyl substances (PFAS). Since both substances are found in many everyday materials and are highly persistent, they accumulate in organisms where they have been associated with fertility problems.

View Article and Find Full Text PDF

Mammalian sperm cells acquire fertilizing capacity as a result of a process termed capacitation. Actin polymerization is important for capacitation; inhibiting actin polymerization prevents the adhesion and fusion of the sperm with the ovule. The main function of RHO proteins CDC42 and RHOA is to direct actin polymerization.

View Article and Find Full Text PDF

Actin polymerization is a crucial process during sperm capacitation. We have recently described the participation of FAK during actin polymerization in guinea pig spermatozoa. However, the mechanism by which FAK mediates these processes is unknown.

View Article and Find Full Text PDF

Actin cytoskeleton remodeling is a critical process for the acquisition of fertilizing capacity by spermatozoa during capacitation. However, the molecular mechanism that regulates this process has not been fully elucidated. In somatic cells, Ras-related C3 botulinum toxin substrate 1 protein (Rac1) promotes the polymerization of actin by participating in the modeling of two structures: lamellipodia and adhesion complexes linked with the plasma membrane.

View Article and Find Full Text PDF

Supplements containing pharmacological concentrations of biotin are commercially available over the counter. Classical toxicity studies have considered biotin administration as harmless; however, recent investigations have shown that biotin supplementation modifies tissue morphology without changes in toxicity markers, raising concerns about the consequences of morphological changes on tissues' functions and the safety of pharmacological concentrations of the vitamin. Testes are very sensitive to toxicants, and testicular histology is a reliable method to study its function.

View Article and Find Full Text PDF

Lead (Pb) exposure at high concentrations is associated with poor sperm quality, acrosome alterations, and low fertilization rate. Sperm capacitation and the acrosome reaction (AR) are required for successful fertilization. Actin polymerization is crucial for correct capacitation, and small GTPases, such as RhoA, Rac1, and Cdc42, are involved.

View Article and Find Full Text PDF

Ca -activated Cl channels (CaCCs) are anionic channels that regulate many important physiological functions associated with chloride and calcium flux in some somatic cells. The molecular identity of CaCCs was revealed to be TMEM16A and TMEM16B (also known as Anoctamin or ANO1 and ANO2, respectively) in all eukaryotes. A recent study suggests the presence of TMEM16A in human sperm and a relationship with the rhZP-induced acrosome reaction.

View Article and Find Full Text PDF

Prior to fertilization, mammalian sperm undergo several molecular, biochemical and physiological changes in a process termed capacitation. However, the mechanisms explaining the involvement of cytoskeletal remodeling and membrane re-ordering in each process prior to fertilization remain poorly understood. We found that the migration of both flotillin microdomains and Src family kinases towards the apical ridge of guinea pig sperm occurs under capacitating conditions.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the toxicity of a variety of environmental chemicals. The absence of this receptor causes serious reproductive complications. Ahr-knockout (Ahr-KO) male mice, for example, are considerably less fertile: Half of the few spermatozoa they produce exhibit morphological alterations, and those with typical morphology may have pathologic modifications.

View Article and Find Full Text PDF

Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton.

View Article and Find Full Text PDF

Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids.

View Article and Find Full Text PDF

Mammalian fertilization is completed by direct interaction between sperm and egg. This process is primarily mediated by both adhesion and membrane-fusion proteins found on the gamete surface. ADAM1, 2, and 3 are members of the ADAMs protein family, and have been involved in sperm-egg binding.

View Article and Find Full Text PDF

Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pH(i)) and Ca(2+) ([Ca(2+)](i)), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential.

View Article and Find Full Text PDF

The cryopreservation process has an important impact on sperm structure and physiology. The negative effects have been mainly observed on the plasma membrane, which is directly stabilized by the cytoskeleton. Since cytoskeleton proteins are osmosensitive and thermosensitive, the aim of this study was to evaluate the damage caused to the bull sperm cytoskeleton by cryopreservation (freezing-thawing).

View Article and Find Full Text PDF

Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl(-) and HCO(3)(-) are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl(-) ([Cl(-)](i)) increases and membrane potential (Em) hyperpolarizes.

View Article and Find Full Text PDF

Research on fertilization in mammalian species has revealed that Ca(2+) is an important player in biochemical and physiological events enabling the sperm to penetrate the oocyte. Ca(2+) is a signal transducer that particularly mediates capacitation and acrosome reaction (AR). Before becoming fertilization competent, sperm must experience several molecular, biochemical, and physiological changes where Ca(2+) plays a pivotal role.

View Article and Find Full Text PDF

Background: The transient receptor potential channel (TRP) family includes more than 30 proteins; they participate in various Ca(2+) dependent processes. TRPs are functionally diverse involving thermal, chemical and mechanical transducers which modulate the concentration of intracellular Ca(2+) ([Ca(2+)]i). Ca(2+) triggers and/or regulates principal sperm functions during fertilization such as motility, capacitation and the acrosome reaction.

View Article and Find Full Text PDF

After epididymal maturation, sperm capacitation, which encompasses a complex series of molecular events, endows the sperm with the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of the oviductal fluid. It is well established that capacitation requires Na(+), HCO(3)(-), Ca(2+), and a cholesterol acceptor; however, little is known about the function of Cl(-) during this important process.

View Article and Find Full Text PDF

Successful fertilization requires gametes to complete several stages, beginning with maturation and transport along the male and female reproductive tracts and ending with the interaction between the sperm and the egg. This last step involves sperm-egg adhesion and membrane fusion. ADAMs (disintegrin and metalloprotease domain proteins) are a family of membrane-anchored glycoproteins that are thought to play diverse roles in cell-cell adhesion through their interaction with integrins.

View Article and Find Full Text PDF

To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts.

View Article and Find Full Text PDF

Mammalian sperm acquire fertilizing ability in the female tract during a process known as capacitation. In mouse sperm, this process is associated with increases in protein tyrosine phosphorylation, membrane potential hyperpolarization, increase in intracellular pH and Ca2+, and hyperactivated motility. The molecular mechanisms involved in these changes are not fully known.

View Article and Find Full Text PDF

Ion channels are extraordinarily efficient machines that move ions in diversely controlled manners, allowing cells to rapidly exchange information with the outside world and with other cells. Communication is the currency of fertilization, as it is of most fundamental cell signaling events. Ion channels are deeply involved in the dialogue between sperm, its surroundings, and the egg.

View Article and Find Full Text PDF