Multicomponent reactions are powerful strategies for synthesizing complex molecules in an efficient manner. In this work, we investigate a novel multicomponent reaction involving arynes, imines, and nitriles, leading to chiral β-aminonitriles. Notably, two new bonds (C-C and C-N) are formed in one step without the use of metal catalysts, showing the great potential of this transformation.
View Article and Find Full Text PDFThe recent interstellar detection of individual polycyclic aromatic hydrocarbons (PAHs) in the dense molecular cloud TMC-1 brings interest in related species that could be present in this astronomical environment. These detections, that include pure PAHs and their cyano-derivative counterparts, were performed through the interplay between laboratory rotational spectroscopy experiments and radioastronomical observations. Here, we present the laboratory rotational spectroscopic study of the five cyano-derivatives of the PAH fluorene (CH).
View Article and Find Full Text PDFThe interplay between laboratory rotational spectroscopy and radio astronomical observations provides the most effective procedure for identifying molecules in the interstellar medium (ISM). Following the recent interstellar detections of several Polycyclic Aromatic Hydrocarbons (PAHs) and cyano derivatives in the dense molecular cloud TMC-1, it is reasonable to consider searching for other cyano-PAHs in this astronomical source. We present a rotational spectroscopy investigation of the two cyano derivatives of the PAH biphenylene, a plausible reaction product of interstellar benzyne.
View Article and Find Full Text PDFThe reaction of 2-(trimethylsilyl)thiophen-3-yl triflate with CsF in the presence of 2,3,4,5-tetraphenylcyclopentadienone affords 4,5,6,7-tetraphenylbenzo[]thiophene, as it would be expected from the hypothesized generation and trapping of 2-thiophyne. However, a detailed experimental and computational study discards the intermediacy of this elusive 5-membered hetaryne. Instead, a complex mechanism involving the generation of an intermediate ketocarbene, which adds to the cyclopentadienone to give an isolable tricyclic intermediate, followed by thermal rearrangements, is proposed.
View Article and Find Full Text PDFOn-surface synthesis has recently been regarded as a promising approach for the generation of new molecular structures. It has been particularly successful in the synthesis of graphene nanoribbons, nanographenes and intrinsically reactive and instable, yet attractive species. It is based on the combination of solution chemistry aimed at preparation of appropriate molecular precursors for further ultra-high vacuum surface assisted transformations.
View Article and Find Full Text PDFDuring the last two decades aryne and bisaryne equivalents have been increasingly used as privileged building blocks for the synthesis of polycyclic aromatic hydrocarbons (PAHs). Here we report the synthesis and reactivity of an efficient precursor of the 2,6,10-triphenylenotriyne synthon, which constitutes the best example to date of a trisaryne equivalent on a benzofused polyaromatic core.
View Article and Find Full Text PDFThe synthesis of porous nanographenes is a challenging task for solution chemistry, and thus, on-surface synthesis provides an alternative approach. Here, we report the synthesis of a triporous nanographene with 102 sp carbon atoms by combining solution and surface chemistry. The carbon skeleton was obtained by Pd-catalyzed cyclotrimerization of arynes in solution, while planarization of the molecule was achieved through two hierarchically organized on-surface cyclodehydrogenation reactions, intra- and inter-blade.
View Article and Find Full Text PDFThe acene series represents a model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport. Here, we present the on-surface generation of the longest acene obtained so far: dodecacene. Scanning tunneling spectroscopy gives access to the energy position and spatial distribution of its electronic states on the Au(111) surface.
View Article and Find Full Text PDFFour decades after the first (and only) reported synthesis of kekulene, this emblematic cycloarene has been obtained again through an improved route involving the construction of a key synthetic intermediate, 5,6,8,9-tetrahydrobenzo[]tetraphene, by means of a double Diels-Alder reaction between styrene and a versatile benzodiyne synthon. Ultra-high-resolution AFM imaging of single molecules of kekulene and computational calculations provide additional support for a molecular structure with a significant degree of bond localization in accordance with the resonance structure predicted by the Clar model.
View Article and Find Full Text PDFIn recent years, synthetic transformations based on aryne chemistry have become particularly popular, mostly due to the spread of methods to generate these highly reactive intermediates in a controlled manner under mild reaction conditions. In fact, aryne cycloadditions such as the Diels-Alder reaction are nowadays widely used for the efficient preparation of polycyclic aromatic compounds. In 1998, our group discovered that arynes can undergo transition metal-catalyzed reactions, a finding that opened new perspectives in aryne chemistry.
View Article and Find Full Text PDFA route to generate cyclacenes by on-surface synthesis is explored. We started by synthesizing two tetraepoxycyclacenes by sequences of Diels-Alder cycloadditions. Subsequently, these molecules were deposited onto Cu(111) and scanning-tunneling-microscopy(STM)-based atom manipulation was employed to dissociate the oxygen atoms.
View Article and Find Full Text PDFBy atom manipulation we performed on-surface chemical reactions of a single molecule on a multilayer insulating film using noncontact atomic force microscopy. The single-electron sensitivity of atomic force microscopy allows us to follow the addition of single electrons to the molecule and the investigation of the reaction products. By performing a novel strategy based on long-lived doubly charged states a single molecule is fragmented.
View Article and Find Full Text PDFThe synthesis of a threefold symmetric nanographene with 19 cata-fused benzene rings distributed within six branches is reported. This flat dendritic starphene, which is the largest unsubstituted cata-condensed PAH that has been obtained to date, was prepared in solution by means of a palladium-catalyzed aryne cyclotrimerization reaction and it was characterized on surface by scanning probe microscopy with atomic resolution.
View Article and Find Full Text PDFA nanographene formed by the fusion of 22 benzene rings has been prepared by combining an in-solution Pd-catalyzed cycloaddition reaction and on-surface Au-promoted cyclodehydrogenation. The structure and electronic properties of the resulting three-fold symmetric C66H24 molecule have been characterized by scanning probe microscopy with atomic resolution and corroborated by theoretical modelling.
View Article and Find Full Text PDFOn-surface synthesis provides a powerful method for the generation of long acene molecules, making possible the detailed investigation of the electronic properties of single higher acenes on a surface. By means of scanning tunneling microscopy and spectroscopy combined with theoretical considerations, we discuss the polyradical character of the ground state of higher acenes as a function of the number of linearly fused benzene rings. We present energy and spatial mapping of the tunneling resonances of hexacene, heptacene, and decacene, and discuss the role of molecular orbitals in the observed tunneling conductance maps.
View Article and Find Full Text PDFOn-surface synthesis represents a successful strategy to obtain designed molecular structures on an ultra-clean metal substrate. While metal surfaces are known to favor adsorption, diffusion, and chemical bonding between molecular groups, on-surface synthesis on non-metallic substrates would allow the electrical decoupling of the resulting molecule from the surface, favoring application to electronics and spintronics. Here, we demonstrate the on-surface generation of hexacene by surface-assisted reduction on a H-passivated Si(001) surface.
View Article and Find Full Text PDFHere we present a new method that integrates atomic force microscopy (AFM) with analytical tools such as high-performance liquid chromatography (HPLC) with diode-array ultraviolet-visible (UV) absorbance, and mass spectrometry (MS) along with synthetic chemistry. This allows the detection, identification, and quantification of novel polycyclic aromatic hydrocarbons (PAH) in complex molecular mixtures. This multidisciplinary methodology is employed to characterize the supercritical pyrolysis products of n-decane, a model fuel.
View Article and Find Full Text PDFThe metal-catalyzed [2+2+2] cocycloaddition of arynes with pyramidalized alkenes is presented. The generation of a highly reactive pyramidalized alkene in the presence of a large excess of in situ-produced arynes led to the corresponding cocyclotrimerization (1 : 2)-adducts in good yields, establishing the first example of a palladium-based reaction of a pyramidalized alkene.
View Article and Find Full Text PDFAntiaromatic and open-shell molecules are attractive because of their distinct electronic and magnetic behaviour. However, their increased reactivity creates a challenge for probing their properties. Here, we describe the on-surface and in-solution generation and characterisation of a highly reactive antiaromatic molecule: indeno[1,2-b]fluorene (IF).
View Article and Find Full Text PDFLarge aromatic carbon nanostructures are cornerstone materials due to their increasingly active role in functional devices, but their synthesis in solution encounters size and shape limitations. New on-surface strategies facilitate the synthesis of large and insoluble planar systems with atomic-scale precision. While dehydrogenation is usually the chemical zipping reaction building up large aromatic carbon structures, mostly benzenoid structures are being produced.
View Article and Find Full Text PDFWe describe the generation of a meta-aryne at low temperature (T = 5 K) using atomic manipulation on Cu(111) and on bilayer NaCl on Cu(111). We observe different voltage thresholds for dehalogenation of the precursor and different reaction products depending on the substrate surface. The chemical structure is resolved by atomic force microscopy with CO-terminated tips, revealing the radical positions and confirming a diradical rather than an anti-Bredt olefin structure for this meta-aryne on NaCl.
View Article and Find Full Text PDFAcenes are intriguing molecules with unique electronic properties. The difficulties in their preparation owing to low stability under ambient conditions are apparent because successful syntheses of long unsubstituted acenes are still scarce, in spite of the great attention they have attracted. Only unsubstituted acenes up to heptacene have been isolated in bulk, with nonacene being the largest acene detected to date.
View Article and Find Full Text PDFWe designed and studied hydrocarbon model compounds by high-resolution noncontact atomic force microscopy. In addition to planar polycyclic aromatic moieties, these novel model compounds feature linear alkyl and cycloaliphatic motifs that exist in most hydrocarbon resources - particularly in petroleum asphaltenes and other petroleum fractions - or in lipids in biological samples. We demonstrate successful intact deposition by sublimation of the alkyl-aromatics, and differentiate aliphatic moieties from their aromatic counterparts which were generated from the former by atomic manipulation.
View Article and Find Full Text PDFSurface-assisted reduction of specially designed air-stable precursors allows us to study single hexacene molecules on Au(111) by scanning tunneling microscopy and spectroscopy, mapping with intramolecular resolution their extended electronic eigenstates.
View Article and Find Full Text PDF