Publications by authors named "Enrique Garcia-Berro"

Type Ia supernovae (SNe Ia) originate from the thermonuclear explosion of carbon-oxygen white dwarfs (CO WDs), giving rise to luminous optical transients. A relatively common variety of subluminous SNe Ia events, referred to as SNe Iax, are believed to arise from the failed detonation of a CO WD. In this paper, we explore failed detonation SNe Ia in the context of the double-degenerate channel of merging WDs.

View Article and Find Full Text PDF

Classical novae are thermonuclear explosions in binary stellar systems containing a white dwarf accreting material from a close companion star. They repeatedly eject 10(-4)-10(-5) solar masses of nucleosynthetically enriched gas into the interstellar medium, recurring on intervals of decades to tens of millennia. They are probably the main sources of Galactic (15)N, (17)O and (13)C.

View Article and Find Full Text PDF

NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars.

View Article and Find Full Text PDF

When intermediate mass stars reach their last stages of evolution they show pronounced oscillations. This phenomenon happens when these stars reach the so-called asymptotic giant branch (AGB), which is a region of the Hertzsprung-Russell diagram located at about the same region of effective temperatures but at larger luminosities than those of regular giant stars. The period of these oscillations depends on the mass of the star.

View Article and Find Full Text PDF

We present the results of an unsupervised classification of the disk and halo white dwarf populations in the solar neighborhood. The classification is done by merging the results of detailed Monte Carlo (MC) simulations, which reproduce very well the characteristics of the white dwarf populations in the solar neighborhood, with a catalogue of real stars. The resulting composite catalogue is analyzed using a competitive learning algorithm.

View Article and Find Full Text PDF