Publications by authors named "Enrique Daza"

The improper disposal of hospital waste products containing genetic materials poses a serious safety threat. We present herein an environmentally friendly technology using a graphene-based novel carbon-allotropic surface to remediate such wastes. The used carbon-allotrope is decorated with an enediyne (EDE-1) enriched aromatic pi-conjugated structure to create an efficient and active surface for cleaving DNA strands.

View Article and Find Full Text PDF

Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold.

View Article and Find Full Text PDF

Theranostic nanoparticles have incredible potential for biomedical applications by enabling visual confirmation of therapeutic efficacy. Numerous issues challenge their clinical translation and are primarily related to the complex chemistry and scalability of synthesizing Nanoparticles. We report a 2-step chemical strategy for high-throughput intracellular delivery of organic and inorganic solid nanoparticles.

View Article and Find Full Text PDF

Spheroidal nanoparticles of algal ("phytonic") origin were synthesized and composed of carbonaceous architectures and surface-rich oxygenated functional groups. Nanoparticles were negatively charged and efficiently luminescent after ultraviolet-range excitation and called as "photophytonic" nanoparticles. A multitude of analytical techniques confirmed the rich profusion of hydroxyl, carboxylate, and amines at the nanoscale, while spectroscopic investigation indicated the presence of α-amines, a signature functionality present in amino acids.

View Article and Find Full Text PDF

Lack of current techniques for the early monitoring of bleb leaks and other post-traumatic or post-surgical ocular injury has posed an unmet clinical need for the development of new techniques. Present evaluation techniques use either subjective or nonquantitative approaches. At present, there are no FDA approved ocular devices that can directly measure ascorbic acid (AA) concentration levels for both tear film (TF) and aqueous humor (AH) at point-of-care (POC) level.

View Article and Find Full Text PDF

Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed 'Nano-CarboScavengers' (NCS) with native properties for facile recovery via booms and mesh tools.

View Article and Find Full Text PDF

Reversible switching of photoluminescence (PL) of carbon nanoparticles (CNP) can be achieved with counterionic macromolecular caging and decaging at the nanoscale. A negatively charged uncoated, "bare" CNP with high luminescence loses its PL when positively charged macromolecules are wrapped around its surface. Prepared caged carbons could regain their emission only through interaction with anionic surfactant molecules, representing anionic amphiphiles of endocytic membranes.

View Article and Find Full Text PDF

Cortisol has been identified as a biomarker in saliva to monitor psychological stress. In this work, we report a label-free paper-based electrical biosensor chip to quantify salivary cortisol at a point-of-care (POC) level. A high specificity of the sensor chip to detect cortisol with a detection limit of 3 pg/mL was achieved by conjugating anticortisol antibody (anti-CAB) on top of gold (Au) microelectrodes using 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester (DTSP) as a self-assembled monolayer (SAM) agent.

View Article and Find Full Text PDF

The use of cesium chloride (CsCl) for cancer therapy ("high pH therapy") has been theorized to produce anticancer properties by raising intracellular pH to induce apoptosis. Although considered as "alternative medicine", little scientific evidence supports this theory. Alternatively, cells have no cesium ion (Cs) mediated channels for clearance.

View Article and Find Full Text PDF

Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability.

View Article and Find Full Text PDF

Chiral carbon nanoparticles (CCNPs) were developed by surface passivation using the chiral ligand (-)-sparteine or (+)-sparteine (denoted (-)-SP/CNP and (+)-SP/CNP, respectively). The chirality of the prepared CCNPs was demonstrated by circular dichroism and polarimetry and employed as an enantioselective separation platform for representative racemic mixtures.

View Article and Find Full Text PDF

Objective: Rising costs and lowered reimbursements make value essential if laparoscopic cholecystectomy (LC) is to be offered to patients without condemning providers to financial loss. We hypothesize that our protocol increases this value. Once practiced, operative time, complications, and patient satisfaction compare with those of the typical method.

View Article and Find Full Text PDF