The improper disposal of hospital waste products containing genetic materials poses a serious safety threat. We present herein an environmentally friendly technology using a graphene-based novel carbon-allotropic surface to remediate such wastes. The used carbon-allotrope is decorated with an enediyne (EDE-1) enriched aromatic pi-conjugated structure to create an efficient and active surface for cleaving DNA strands.
View Article and Find Full Text PDFVarious cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold.
View Article and Find Full Text PDFTheranostic nanoparticles have incredible potential for biomedical applications by enabling visual confirmation of therapeutic efficacy. Numerous issues challenge their clinical translation and are primarily related to the complex chemistry and scalability of synthesizing Nanoparticles. We report a 2-step chemical strategy for high-throughput intracellular delivery of organic and inorganic solid nanoparticles.
View Article and Find Full Text PDFSpheroidal nanoparticles of algal ("phytonic") origin were synthesized and composed of carbonaceous architectures and surface-rich oxygenated functional groups. Nanoparticles were negatively charged and efficiently luminescent after ultraviolet-range excitation and called as "photophytonic" nanoparticles. A multitude of analytical techniques confirmed the rich profusion of hydroxyl, carboxylate, and amines at the nanoscale, while spectroscopic investigation indicated the presence of α-amines, a signature functionality present in amino acids.
View Article and Find Full Text PDFIncreasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed 'Nano-CarboScavengers' (NCS) with native properties for facile recovery via booms and mesh tools.
View Article and Find Full Text PDFThe use of cesium chloride (CsCl) for cancer therapy ("high pH therapy") has been theorized to produce anticancer properties by raising intracellular pH to induce apoptosis. Although considered as "alternative medicine", little scientific evidence supports this theory. Alternatively, cells have no cesium ion (Cs) mediated channels for clearance.
View Article and Find Full Text PDFChiral carbon nanoparticles (CCNPs) were developed by surface passivation using the chiral ligand (-)-sparteine or (+)-sparteine (denoted (-)-SP/CNP and (+)-SP/CNP, respectively). The chirality of the prepared CCNPs was demonstrated by circular dichroism and polarimetry and employed as an enantioselective separation platform for representative racemic mixtures.
View Article and Find Full Text PDF