Publications by authors named "Enrico T Nadres"

Extensive, uncontrolled growth of algae and cyanobacteria is an environmental, public health, economic, and technical issue in managing natural and engineered water systems. Synthetic biomimetic polymers have been almost exclusively considered antimicrobial alternatives to conventional antibiotics to treat human bacterial infections. Very little is known about their applicability in an aquatic environment.

View Article and Find Full Text PDF

Response surface methodology was successfully used to optimize the amounts of chitosan (CS), polyethyleneimine (PEI), graphene oxide (GO), and glutaraldehyde (GLA) to produce a multifunctional nanocomposite membrane coating able to remove positively and negatively charged heavy metals, such as Cr(VI) and Cu(II). Batch experiments with different concentrations of the four coating components (GO, CS, PEI, and GLA) on cellulose membranes were carried out with solutions containing 10 ppm Cr(VI) and Cu(II) ions. Reduced quadratic equations for the Cr(VI) and Cu(II) removal were obtained based on the observed results of the batch experiments.

View Article and Find Full Text PDF

The discovery of anticancer therapeutics effective in eliminating dormant cells is a significant challenge in cancer biology. Here, we describe new synthetic polymer-based anticancer agents that mimic the mode of action of anticancer peptides. These anticancer polymers developed here are designed to capture the cationic, amphiphilic traits of anticancer peptides.

View Article and Find Full Text PDF

The present study compares for the first time the effects of h-MoO3 and α-MoO3 against two fungal strains: Aspergillus niger and Aspergillus flavus. The h-MoO3 nanoparticles were more toxic to both fungi than α-MoO3. The toxic effects of h-MoO3 were more pronounced toward A.

View Article and Find Full Text PDF

The synthesis of biocompatible polymers for coating applications has gained significant attention in recent years due to the increasing spread of infectious diseases via contaminated surfaces. One strategy to combat this problem is to apply antimicrobial coatings to surfaces prone to microbial contamination. This study presents a series of biomimetic polymers that can be used as adhesives to immobilize known antimicrobial agents on the surfaces as coatings.

View Article and Find Full Text PDF

In this report, we demonstrate the pH-dependent, in vitro antimicrobial activity of a cationic, amphiphilic random copolymer against clinical isolates of drug-resistant Staphylococcus aureus. The polymer was developed toward a long-term goal of potential utility in the treatment of skin infections. The proposed mechanism of action of the polymer is through selectively binding to bacterial membranes and subsequent disruption of the membrane structure/integrity, ultimately resulting in bacterial cell death.

View Article and Find Full Text PDF

The antibacterial and antibiofilm activities of cationic amphiphilic methacrylate polymers against cariogenic bacterium S. mutans were investigated. Cationic homopolymer PE and copolymer PE containing 31 mol % of ethyl methacrylate were synthesized by reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of sp(2) and sp(3) C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in tert-amyl alcohol or water solvent at 100-140 °C. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation.

View Article and Find Full Text PDF

A method for five- and six-membered heterocycle formation by palladium-catalyzed C-H/N-H coupling is presented. The method employs a picolinamide directing group, PhI(OAc)(2) oxidant, and toluene solvent at 80-120 °C. Cyclization is effective for sp(2) as well as aliphatic and benzylic sp(3) C-H bonds.

View Article and Find Full Text PDF

The palladium-catalyzed direct arylation of indoles, pyrroles, and furans by aryl chlorides has been demonstrated. The method employs a palladium acetate catalyst, 2-(dicyclohexylphosphino)-biphenyl ligand, and an inorganic base. Electron-rich and electron-poor aryl chlorides as well as chloropyridine coupling partners can be used, and arylated heterocycles are obtained in moderate to good yields.

View Article and Find Full Text PDF