The ghrelin receptor displays a high constitutive activity suggested to be involved in the regulation of appetite and food intake. Here, we have created peptides with small changes in the core binding motif -wFw- of the hexapeptide KwFwLL-NH(2) that can swap the peptide behavior from inverse agonism to agonism, indicating the importance of this sequence. Introduction of β-(3-benzothienyl)-d-alanine (d-Bth), 3,3-diphenyl-d-alanine (d-Dip) and 1-naphthyl-d-alanine (d-1-Nal) at position 2 resulted in highly potent and efficient inverse agonists, whereas the substitution of d-tryptophane at position 4 with 1-naphthyl-d-alanine (d-1-Nal) and 2-naphthyl-d-alanine (d-2-Nal) induces agonism in functional assays.
View Article and Find Full Text PDFGPR39 is an orphan member of the ghrelin receptor family that recently was suggested to be the receptor for obestatin, a peptide derived from the ghrelin precursor. Here, we compare the effect of obestatin to the effect of Zn(2+) on signal transduction and study the effect of obestatin on food intake. Although Zn(2+) stimulated inositol phosphate turnover, cAMP production, arrestin mobilization, as well as cAMP response element-dependent and serum response element-dependent transcriptional activity in GPR39-expressing cells as opposed to mock-transfected cells, no reproducible effect was obtained with obestatin in the GPR39-expressing cells.
View Article and Find Full Text PDF