mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA.
View Article and Find Full Text PDFWe demonstrate direct nuclear delivery of DNA into live mammalian cells using the photothermal nanoblade. Pulsed laser-triggered cavitation bubbles on a titanium-coated micropipette tip punctured both cellular plasma and nuclear membranes, which was followed by pressure-controlled delivery of DNA into the nucleus. High-level and efficient plasmid expression in different cell types with maintained cell viability was achieved.
View Article and Find Full Text PDFBackground: Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and Northern Australia. This Gram-negative pathogen possesses numerous virulence factors including three "injection type" type three secretion systems (T3SSs). B.
View Article and Find Full Text PDF