Absolute angular rotation rate measurements with sensitivity better than prad/s would be beneficial for fundamental science investigations. In this regard, large frame Earth based ring laser gyroscopes are top instrumentation as far as bandwidth, long-term operation, and sensitivity are concerned. Here, we demonstrate that the GINGERINO active-ring laser upper limiting noise is close to 2×10^{-15} rad/s for ∼2×10^{5} s of integration time, as estimated by the Allan deviation evaluated in a differential measurement scheme.
View Article and Find Full Text PDFDevices as large as ring laser gyroscopes (RLGs) for fundamental physics and geophysics investigation are currently run by means of radio frequency (RF) power supply systems. This is not the standard method to supply a gas laser, which typically is powered by a DC system. In literature, RF power supply lasers were studied several years ago, and to correctly understand the behavior of devices such as RLGs, a more detailed study has been pursued.
View Article and Find Full Text PDFGINGERino is a large frame laser gyroscope investigating the ground motion in the most inner part of the underground international laboratory of the Gran Sasso, in central Italy. It consists of a square ring laser with a 3.6 m side.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2010
G-Pisa is an experiment investigating the possibility of operating a high-sensitivity laser gyroscope with area less than 1 m2 for improving the performances of the mirrors suspensions of the gravitational wave antenna Virgo. The experimental set-up consists of a He-Ne ring laser with a 4-mirror square cavity. The laser is pumped by an RF discharge where the RF oscillator includes the laser plasma to reach a better stability.
View Article and Find Full Text PDF