Network routing approaches are widely used to study the evolution in time of self-adapting systems. However, few advances have been made for problems where adaptation is governed by time-dependent inputs. In this work we study a dynamical systems where the edge conductivities of a network are regulated by time-varying mass loads injected on nodes.
View Article and Find Full Text PDFDetecting communities in networks is important in various domains of applications. While a variety of methods exist to perform this task, recent efforts propose Optimal Transport (OT) principles combined with the geometric notion of Ollivier-Ricci curvature to classify nodes into groups by rigorously comparing the information encoded into nodes' neighborhoods. We present an OT-based approach that exploits recent advances in OT theory to allow tuning between different transportation regimes.
View Article and Find Full Text PDFRouting optimization is a relevant problem in many contexts. Solving directly this type of optimization problem is often computationally intractable. Recent studies suggest that one can instead turn this problem into one of solving a dynamical system of equations, which can instead be solved efficiently using numerical methods.
View Article and Find Full Text PDF