Publications by authors named "Enrico Catizzone"

Zeolites are crystalline aluminosilicates with well-defined microporous structures that have found several applications in catalysis. In recent years, great effort has been devoted to defining strategies aimed at tuning structural and acidity properties to improve the catalytic performance of zeolites. Depending on the zeolitic structure, the acid sites located inside the crystals catalyze reactions by exploiting the internal channel shape-selectivity.

View Article and Find Full Text PDF

Phenol is a major component in the scrubber wastewater used for syngas purification in biomass-based gasification plants. Adsorption is a common strategy for wastewater purification, and carbon materials, such as activated carbons and biochar, may be used for its remediation. In this work, we compare the adsorption behavior towards phenol of two biochar samples, produced by pyrolysis and gasification of lignocellulose biomass, with two commercial activated carbons.

View Article and Find Full Text PDF

The production of dimethyl ether from renewables or waste is a promising strategy to push towards a sustainable energy transition of alternative eco-friendly diesel fuel. In this work, we simulate the synthesis of dimethyl ether from a syngas (a mixture of CO, CO and H) produced from gasification of digestate. In particular, a thermodynamic analysis was performed to individuate the best process conditions and syngas conditioning processes to maximize yield to dimethyl etehr (DME).

View Article and Find Full Text PDF

The synthesis of dimethyl ether (DME) is an important step in the production of chemical intermediate because it is possible to prepare it by direct hydrogenation of CO. This paper reports the effect of different zeolitic frameworks (such as: BEA, EUO, FER, MFI, MOR, MTW, TON) on methanol conversion, DME selectivity and catalyst deactivation. The effect of crystal size, Si/Al ratio and acidity of the investigated catalysts have been also studied.

View Article and Find Full Text PDF

The biomass-to-methanol process may play an important role in introducing renewables in the industry chain for chemical and fuel production. Gasification is a thermochemical process to produce syngas from biomass, but additional steps are requested to obtain a syngas composition suitable for methanol synthesis. The aim of this work is to perform a computer-aided process simulation to produce methanol starting from a syngas produced by oxygen-steam biomass gasification, whose details are reported in the literature.

View Article and Find Full Text PDF

A mesoporous silica-based drug delivery device potentially useful for bone-specific drug delivery has been designed, developed and characterized starting from MSU-type mesoporous silica. The proposed system consists of a mesoporous silica nanoparticles (MSN) based vehicle, presenting alendronate as a targeting functionality for bone tissue while ibuprofen is used as a model molecule for the drugs to be delivered. The particles are functionalized on the external surface using a propionitrile derivative that is successively hydrolyzed to a carboxylic group.

View Article and Find Full Text PDF

CO₂ hydrogenation to dimethyl ether (DME) is a promising strategy to drive the current chemical industry towards a low-carbon scenario since DME can be used as an eco-friendly fuel as well as a platform molecule for chemical production. A Cu‒ZnO‒ZrO₂/ferrierite (CZZ/FER) hybrid grain was recently proposed as a catalyst for CO₂-to-DME one-pot conversion exhibiting high DME productivity thanks to the unique shape-selectivity offered by ferrierite zeolite. Nevertheless, such a catalyst deactivates but no direct evidence has been reported of activity loss over time.

View Article and Find Full Text PDF

This review reports recent achievements in dimethyl ether (DME) synthesis via CO₂ hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (bio)fuel as DME. In this view, the production of DME from catalytic hydrogenation of CO₂ appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers.

View Article and Find Full Text PDF