Publications by authors named "Enrico Cadoni"

In this study, we developed a simple pull-down assay using peptide nucleic acids (PNAs) equipped with a His-Tag and a G-quadruplex (G4) ligand for the selective recognition and quantification of G4-forming DNA sequences. Efficient and specific target recovery was achieved using optimized buffer conditions and magnetic Ni-NTA beads, while quantification was realized by employing the enzyme-like properties of the G4/hemin complex. The assay was validated through HPLC analysis and adapted for a 96-well plate format.

View Article and Find Full Text PDF

G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity.

View Article and Find Full Text PDF

G-Quadruplexes (G4s) are highly dynamic and polymorphic nucleic acid structures that can adopt a variety of conformations. When exposed to oxidative conditions, more specifically singlet oxygen, the guanosine nucleobases can be oxidized, which in turn can affect the conformation and folding of the G4. Based on this peculiar phenomenon, it is rationalized that G4s can serve as quantification sensors for the production of singlet oxygen.

View Article and Find Full Text PDF

While natural oligonucleotides (ONs) are increasingly used as therapeutic and diagnostic tools, they still face certain challenges such as low resistance to enzymatic degradation, potential immunogenicity, and delivery issues, which can limit their applications. Peptide Nucleic Acids (PNAs) are promising alternatives due to their high affinity for DNA and RNA, the high resistance to enzymatic degradation, and the easy introduction of a wide range of potential modifications. Chemical modifications that enable the covalent targeting of specific DNA and RNA strands offer additional advantages, including enhanced potency.

View Article and Find Full Text PDF

Oligonucleotides (ODNs) find applications as diagnostic and therapeutic tools due to their unique ability to interact, thanks to Watson-Crick base pairing, with a specific DNA or RNA target strand. Although most of the tools available today rely on mere hydrogen bond formation, chemical modifications to enable covalent interstrand-crosslinking (ICL) have been reported, and are gaining a place under the spotlight as they potentially offer a series of advantages over the state of the art, including a higher potency and selectivity. This methodological paper focuses on the use of a pro-reactive furan moiety and its subsequent oxidation for applications in ODN targeting.

View Article and Find Full Text PDF

The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting.

View Article and Find Full Text PDF

The development of interstrand-crosslinking (ICL) probes for the covalent targeting of DNA and RNA sequences of interest has been extensively reported in the past decade. However, most of the reactions reported so far induce the formation of a stable adduct that cannot be reverted, thus rendering these chemistries less useful in applications where the reversibility of the reaction is needed for further downstream processing of the targeted and isolated sequences, such as enzymatic amplification steps. In this work, we report on the reversibility of the furan-mediated ICL reaction.

View Article and Find Full Text PDF

Singlet oxygen (O) is the excited state of ground, triplet state, molecular oxygen (O). Photosensitized O has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer.

View Article and Find Full Text PDF

Ligation methodologies featuring bio-orthogonal units and leading to the formation of a stable adduct are the ideal candidates for being applied in a biological context. However, most of the available strategies rely on highly reactive species that require careful handling, or on the activation of pro-reactive functional groups. We here report on a proximity-induced ligation reaction that relies on a stable 2,5-dione, that can be conveniently generated under acidic conditions from a 2,5-dialkylfuran building block, and hydrazine nucleophiles.

View Article and Find Full Text PDF

G-quadruplex (G4)-interactive small molecules have a wide range of potential applications, not only as drugs, but also as sensors of quadruplex structures. The purpose of this work is the synthesis of analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify relevant structure-activity relationships to apply to the design of other G4-interactive small molecules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments revealed that non-methylated derivatives with a relative 1,4 position between the amide linker and the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-Telo G4, a 21-nt sequence present in human telomeres.

View Article and Find Full Text PDF

Oligonucleotide-templated reactions are frequently exploited for target detection in biosensors and for the construction of DNA-based materials and probes in nanotechnology. However, the translation of the specifically used template chemistry from solution to surfaces, with the final aim of achieving highly selective high-throughput systems, has been difficult to reach and therefore, poorly explored. Here, we show the first example of a visible light-triggered templated ligation on a surface, employing furan-modified peptide nucleic acids (PNAs).

View Article and Find Full Text PDF

G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited.

View Article and Find Full Text PDF

We propose a bimolecular approach for G-quadruplex alkylation, using a pro-reactive furan-containing ligand, activated by red-light irradiation of a proximate G4-binding photosensitizer. G4- over dsDNA alkylation can be achieved selectively and proves high-yielding at low ligand excess. HPLC and modelling studies allowed identifying potential residues involved in the alkylation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs or miRs) are small noncoding RNAs involved in the fine regulation of post-transcriptional processes in the cell. The physiological levels of these short (20-22-mer) oligonucleotides are important for the homeostasis of the organism, and therefore dysregulation can lead to the onset of cancer and other pathologies. Their importance as biomarkers is constantly growing and, in this context, detection methods based on the hybridization to peptide nucleic acids (PNAs) are gaining their place in the spotlight.

View Article and Find Full Text PDF

The generation of PNA-decorated gold nanoparticles (AuNPs) has revealed to be more difficult as compared to the generation of DNA-functionalized ones. The less polar nature of this artificial nucleic acid system and the associated tendency of the neutral poly-amidic backbone to aspecifically adsorb onto the gold surface rather than forming a covalent bond through gold-thiol interaction, combined with the low solubility of PNAs itself, form the main limiting factors in the functionalization of AuNP. Here, we provide a convenient methodology that allows to easily conjugate PNAs to AuNP.

View Article and Find Full Text PDF

Quadruplex nucleic acids are promising targets for cancer therapy. In this study we used a fragment-based approach to create new flexible G-quadruplex (G4) DNA-interactive small molecules with good calculated oral drug-like properties, based on quinoline and triazole heterocycles. G4 melting temperature and polymerase chain reaction (PCR)-stop assays showed that two of these compounds are selective G4 ligands, as they were able to induce and stabilize G4s in a dose- and DNA sequence-dependent manner.

View Article and Find Full Text PDF

Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves.

View Article and Find Full Text PDF