Publications by authors named "Enrico Bruder"

Among the magnetocaloric materials featuring first-order phase transitions (FOPT), FeRh is considered as a reference system to study the FOPT because it is a "simple" binary system with a CsCl structure exhibiting a large adiabatic temperature change. Recently, ab initio theory predicted that changes in the Fe/Rh stoichiometry in the vicinity of equiatomic composition strongly influence the FOPT characteristics. However, this theoretical prediction was not clearly verified experimentally.

View Article and Find Full Text PDF

For millennia, ceramics have been densified sintering in a furnace, a time-consuming and energy-intensive process. The need to minimize environmental impact calls for new physical concepts beyond large kilns relying on thermal radiation and insulation. Here, we realize ultrarapid heating with intense blue and UV-light.

View Article and Find Full Text PDF

Titanium nitride thin films are used as an electrode material in superconducting (SC) applications and in oxide electronics. By controlling the defect density in the TiN thin film, the electrical properties of the film can achieve low resistivities and a high critical temperature ( ) close to bulk values. Generally, low defect densities are achieved by stoichiometric growth and a low grain boundary density.

View Article and Find Full Text PDF
Article Synopsis
  • Functional and structural ceramics are crucial in high-tech applications but are limited by their brittleness, making them prone to short cracks.
  • Traditional toughening methods, which rely on mobile dislocations, have been ineffective in ceramics due to their strong atomic bonds; however, new research demonstrates potential for engineering dislocation structures to enhance toughness.
  • By utilizing modern microscopy and simulations, researchers found that adjusting dislocation density can significantly improve crack resistance in ceramics, suggesting that innovative synthesis strategies could enhance their mechanical performance.
View Article and Find Full Text PDF

Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting.

View Article and Find Full Text PDF

Grid applications require high power density (for frequency regulation, load leveling, and renewable energy integration), achievable by combining multiple batteries in a system without strict high capacity requirements. For these applications however, safety, cost efficiency, and the lifespan of electrode materials are crucial. Titanates, safe and longevous anode materials providing much lower energy density than graphite, are excellent candidates for this application.

View Article and Find Full Text PDF

We investigate an extraordinarily high ductility in a low alloy carbon steel at an elevated temperature after a quenching and partitioning (Q&P) treatment. The conventional (quenched and tempered) reference material does not show similar behavior. Interestingly, the Q&P treated material's ductility is considerably reduced at increasing strain rates while strength remains almost constant.

View Article and Find Full Text PDF