Publications by authors named "Enrico Balducci"

The Gram-negative bacterium B. pertussis is the causative agent of whooping cough. This infection is re-emerging and new features related to Bordetella pathogenesis and microbiology could be relevant to defeat it.

View Article and Find Full Text PDF

Mono ADP-ribosyltransferases are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In prokaryotes, mono ADP-ribose transfer enzymes often represent a family of exotoxins that display activity in a variety of bacteria responsible for causing disease in plants and animals. A bioinformatic approach has allowed us to identify that CagL gene from some Helicobacter pylori strains shares a sequence pattern with ADP-ribosylating toxins of the CT-group.

View Article and Find Full Text PDF

The LL-37 antimicrobial peptide is the only cathelicidin peptide found in humans that has antimicrobial and immunomodulatory properties. Because it exerts also chemotactic and angiogenetic activity, LL-37 is involved in promoting wound healing, reducing inflammation, and strengthening the host immune response. The key to the effectiveness of antimicrobial peptides (AMPs) lies in the different compositions of bacterial versus host cell membranes.

View Article and Find Full Text PDF

LL-37 is a cationic peptide belonging to the cathelicidin family that has antimicrobial and immune-modulatory properties. Here we show that the mammalian mono-ADP-ribosyltransferase-1 (ART1), which selectively transfers the ADP-ribose moiety from NAD to arginine residues, ADP-ribosylates LL-37 in vitro. The incorporation of ADP-ribose was first observed by Western blot analysis and then confirmed by MALDI-TOF.

View Article and Find Full Text PDF

α-Defensins (e.g. human neutrophil peptides, HNPs) have a broad spectrum bactericidal activity contributing to human innate immunity.

View Article and Find Full Text PDF

NarE is an arginine-specific mono-ADP-ribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NAD-concentration-dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated.

View Article and Find Full Text PDF

Antimicrobial peptides are an important component of innate immunity and have generated considerable interest as a new potential class of natural antibiotics. The biological activity of antimicrobial peptides is strongly influenced by peptide-membrane interactions. Human Neutrophil Peptide 1 (HNP-1) is a 30 aminoacid peptide, belonging to the class of α-defensins.

View Article and Find Full Text PDF

Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins.

View Article and Find Full Text PDF

CRM197 is an enzymatically inactive and nontoxic form of diphtheria toxin that contains a single amino acid substitution (G52E). Being naturally nontoxic, CRM197 is an ideal carrier protein for conjugate vaccines against encapsulated bacteria and is currently used to vaccinate children globally against Haemophilus influenzae, pneumococcus, and meningococcus. To understand the molecular basis for lack of toxicity in CRM197, we determined the crystal structures of the full-length nucleotide-free CRM197 and of CRM197 in complex with the NAD hydrolysis product nicotinamide (NCA), both at 2.

View Article and Find Full Text PDF

HNP-1 is an antimicrobial peptide that undergoes proteolytic cleavage to become a mature peptide. This process represents the mechanism commonly used by the cells to obtain a fully active antimicrobial peptide. In addition, it has been recently described that HNP-1 is recognized as substrate by the arginine-specific ADP-ribosyltransferase-1.

View Article and Find Full Text PDF

NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the family of ADP-ribosyltransferases (ADPRT) and catalyzes the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells.

View Article and Find Full Text PDF

In prokaryotes, mono-ADP-ribose transfer enzymes represent a family of exotoxins that display activity in a variety of bacterial pathogens responsible for causing disease in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report here that NarE, a putative ADP-ribosylating toxin previously identified from Neisseria meningitidis, which shares structural homologies with Escherichia coli heat labile enterotoxin and toxin from Vibrio cholerae, possesses an iron-sulfur center. The recombinant protein was expressed in E.

View Article and Find Full Text PDF

A549, a type II alveolar epithelial cell line stimulated with LPS (10 mug/ml), released high levels of the inflammatory cytokines IL-6 and IL-8. Here, we have investigated whether ADP-ribosylation inhibitors block the LPS-triggered cytokine release in epithelial cells. When coincubating A549 with LPS and meta-iodobenzylguanidine or novobiocin, selective arginine-dependent ART-inhibitors, the release of IL-6 and IL-8 was inhibited in a concentration-dependent manner.

View Article and Find Full Text PDF

Mono ADP-ribosyltransferases (ARTs) are a family of enzymes related to bacterial toxins that possess adenosine diphosphate ribosyltransferase activity. We have assessed that A549 constitutively expressed ART1 on the cell surface and shown that lipotheicoic acid (LTA) and flagellin, but not lipopolysaccharide (LPS), peptidoglycan (PG) and poly (I:C), up-regulate ART1 in a time and dose dependent manner. These agonists did not alter the expression of ART3 and ART5 genes.

View Article and Find Full Text PDF

With the advent of the genomic era, identification of bacterial factors involved in virulence is a different challenge. Given the vast amount of information available on toxins, in terms of sequence and 3D structure, and thanks to the growing number of sequenced bacterial genomes, it is possible to proceed by homology criteria to predict novel toxins in different microorganisms. ADP-ribosyltransferases constitute a class of functionally conserved enzymes, which display toxic activity in a variety of bacterial pathogens.

View Article and Find Full Text PDF

Mono ADP-ribosyltransferases (ADPRTs) are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In bacteria, these enzymes often act as potent toxins and play an important role in pathogenesis. Here we report a profile-based computational approach that, assisted by secondary structure predictions, has allowed the identification of a previously undiscovered ADP-ribosyltransferase in Neisseria meningitidis (NarE).

View Article and Find Full Text PDF

NAD glycohydrolases are enzymes that catalyze the hydrolysis of NAD to produce ADP-ribose and nicotinamide. Regulation of these enzymes has not been fully elucidated. We have identified a NAD-glycohydrolase activity associated with the outer surface of the plasma membrane in human lung epithelial cell line A549.

View Article and Find Full Text PDF