The operation of modern free-electron lasers (FELs) necessitates precise knowledge of electron beam properties at the undulator to ensure the level of control required by increasingly demanding experiments. In seeded FELs, where only electrons interacting with the seed laser contribute to the process, it is crucial to determine the local values of these properties. We present a novel method, based on accurate modeling of the FEL process in high-gain harmonic generation, to accurately retrieve the electron beam slice energy spread, current and laser-induced energy modulation.
View Article and Find Full Text PDFTailored light-matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency, with applications ranging from quantum information to photochemistry. Although strong light-matter interactions are readily induced at the valence electron level using long-wavelength radiation, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain.
View Article and Find Full Text PDFWe demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation.
View Article and Find Full Text PDFFemtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process.
View Article and Find Full Text PDFCollinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulses may introduce nonlinear mixing signals that compromise the experiment at short time delays. Here, we investigate these effects in detail by extending the analysis described in a recent publication (Wituschek et al.
View Article and Find Full Text PDFThe recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties.
View Article and Find Full Text PDFAttosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field.
View Article and Find Full Text PDFIntense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio.
View Article and Find Full Text PDFWe investigate the orthorhombic distortion and the structural dynamics of epitaxial MnAs layers on GaAs(001) using static and time-resolved x-ray diffraction. Laser-induced intensity oscillations of Bragg reflections allow us to identify the optical phonon associated with orthorhombic distortion and to follow its softening along the path towards an undistorted phase of hexagonal symmetry. The frequency of this mode falls in the THz range, in agreement with recent calculations.
View Article and Find Full Text PDFThe seeded Free-Electron Laser (FEL) FERMI is the first source of short-wavelength light possessing the full coherence of optical lasers, together with the extreme power available from FELs. FERMI provides longitudinally coherent radiation in the Extreme Ultraviolet and soft x-ray spectral regions, and therefore opens up wide new fields of investigation in physics. We first propose experiments exploiting this property to provide coherent control of the photoionization of neon and helium, carry out numerical calculations to find optimum experimental parameters, and then describe how these experiments may be realized.
View Article and Find Full Text PDFChirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences.
View Article and Find Full Text PDFIn a coherent control experiment, light pulses are used to guide the real-time evolution of a quantum system. This requires the coherence and the control of the pulses' electric-field carrier waves. In this work, we use frequency-domain interferometry to demonstrate the mutual coherence of time-delayed pulses generated by an extreme ultraviolet seeded free-electron laser.
View Article and Find Full Text PDFThe advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch.
View Article and Find Full Text PDFWe demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters.
View Article and Find Full Text PDFIntense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses.
View Article and Find Full Text PDFWe present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.
View Article and Find Full Text PDFWe demonstrate the possibility of running a single-pass free electron laser (FEL) in a dynamical regime, which can be exploited to perform two-color pump-probe experiments in the vacuum ultraviolet or x-ray domain, using the free-electron laser emission both as a pump and as a probe. The studied regime is induced by triggering the free-electron laser process with a powerful laser pulse, carrying a significant and adjustable frequency chirp. As a result, the output FEL radiation is split in two pulses, separated in time (as previously observed by different authors), and having different central wavelengths.
View Article and Find Full Text PDFA well-known method to suppress chaos in a periodically forced chaotic system is to add a harmonic perturbation. The phase control of chaos scheme uses the phase difference between a small added harmonic perturbation and the main driving to suppress chaos, leading the system to different periodic orbits. Using the Duffing oscillator as a paradigm, we present here an in-depth study of this technique.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2004
An approach is presented for the reconstruction of phase synchronization phenomena in a chaotic CO2 laser from experimental data. We analyze this laser system in a regime able to phase synchronize with a weak sinusoidal forcing. Our technique recovers the synchronization diagram of the experimental system from only few measurement data sets, thus allowing the prediction of the regime of phase synchronization as well as nonsynchronization in a broad parameter space of forcing frequency and amplitude without further experiments.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2004
We analyze the effects of stochastic perturbations in a physical example occurring as a higher-dimensional dynamical system. The physical model is that of a class- B laser, which is perturbed stochastically with finite noise. The effect of the noise perturbations on the dynamics is shown to change the qualitative nature of the dynamics experimentally from a stochastic periodic attractor to one of chaoslike behavior, or noise-induced chaos.
View Article and Find Full Text PDFWe describe an infrared interferometric technique based on a two-dimensional spatial fringe analysis Fourier method for investigating the characteristic ring diffraction pattern generated by the self-phase-modulation effect induced in nematic liquid crystals (NLCs) by an infrared laser beam and for measuring the nonlinear refractive index of the NLCs. The experimental setup employs a Mach-Zehnder interferometer with a cw CO2 laser emitting at 10.6 microm and a pyroelectric optoelectronic sensor matrix to detect the modulated ring-pattern intensity distribution formed in the far field by a nematic E7 sample.
View Article and Find Full Text PDF