Mathematical models improve our fundamental understanding of the environmental behavior, fate, and transport of engineered nanomaterials (NMs, chemical substances or materials roughly 1-100 nm in size) and facilitate risk assessment and management activities. Although today's large-scale environmental fate models for NMs are a considerable improvement over early efforts, a gap still remains between the experimental research performed to date on the environmental fate of NMs and its incorporation into models. This article provides an introduction to the current state of the science in modeling the fate and behavior of NMs in aquatic environments.
View Article and Find Full Text PDFAlthough sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply.
View Article and Find Full Text PDFRestoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise.
View Article and Find Full Text PDF