Publications by authors named "Enric Xipell"

Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create and validate a new frameless in vivo model for Diffuse Intrinsic Pontine Glioma (DIPG) using a guide-screw system for precise implantation of tumor cells.
  • A guide-screw was implanted in immunodeficient mice, allowing for the delivery of DIPG human cell lines and other therapies while maintaining accuracy during the process.
  • All mice developed severe neurological symptoms, confirming tumor presence through histopathological analysis, and the model demonstrated effectiveness for evaluating treatments for DIPG.
View Article and Find Full Text PDF

Introduction: Glioblastoma is the most malignant brain tumor in adults and is associated with poor survival despite multimodal treatments. Glioma stem-like cells (GSCs) are cells functionally defined by their self-renewal potential and the ability to reconstitute the original tumor upon orthotopic implantation. They have been postulated to be the culprit of glioma chemo- and radio-resistance ultimately leading to relapse.

View Article and Find Full Text PDF

Glioblastoma is the most frequent malignant brain tumor. Even with aggressive treatment, prognosis for patients is poor. One characteristic of glioblastoma cells is its intrinsic resistance to apoptosis.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum (ER) stress results from protein misfolding imbalance and has been postulated as a therapeutic strategy. ER stress activates the unfolded protein response which leads to a complex cellular response, including the upregulation of aberrant protein degradation in the ER, with the goal of resolving that stress. O(6)-methylguanine DNA methyltransferase (MGMT), N-methylpurine DNA glycosylase (MPG), and Rad51 are DNA damage repair proteins that mediate resistance to temozolomide in glioblastoma.

View Article and Find Full Text PDF

Despite the recent advances in the development of antitumor therapies, the prognosis for patients with malignant gliomas remains dismal. Therapy with tumor-selective viruses is emerging as a treatment option for this devastating disease. In this study we characterize the anti-glioma effect of VCN-01, an improved hyaluronidase-armed pRB-pathway-selective oncolytic adenovirus that has proven safe and effective in the treatment of several solid tumors.

View Article and Find Full Text PDF

Purpose: Osteosarcoma is the most common malignant bone tumor in children and adolescents. Despite aggressive chemotherapy, more than 30% of patients do not respond and develop bone or lung metastasis. Oncolytic adenoviruses engineered to specifically destroy cancer cells are a feasible option for osteosarcoma treatment.

View Article and Find Full Text PDF

Osteosarcoma is the most common malignant bone tumor in children and adolescents. The presence of metastases and the lack of response to conventional treatment are the major adverse prognostic factors. Therefore, there is an urgent need for new treatment strategies that overcome both of these problems.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA.

View Article and Find Full Text PDF