Many fungi can develop on building material in indoor environments if the moisture level is high enough. Among species that are frequently observed, some are known to be potent mycotoxin producers. This presence of toxinogenic fungi in indoor environments raises the question of the possible exposure of occupants to these toxic compounds by inhalation after aerosolization.
View Article and Find Full Text PDFViral diseases can spread through a variety of routes including aerosols. Yet, limited data are available on the efficacy of aerosolized chemicals to reduce viral loads in the air. Bacteriophages (phages) are often used as surrogates for hazardous viruses in aerosol studies because they are inexpensive, easy to handle, and safe for laboratory workers.
View Article and Find Full Text PDFIn addition to the biodegradation problems encountered in buildings, exposure of their occupants to mold is responsible for numerous diseases such as respiratory infections, immediate or delayed allergies and different types of irritations. However, current techniques are unable to detect mold at an early stage of development or hidden contaminants. Moularat et al.
View Article and Find Full Text PDFAlthough we spend the majority of our lives indoors, the airborne microbial content of enclosed spaces still remains inadequately described. The objective of this study was to characterize the bacterial diversity of indoor air in three different enclosed spaces with three levels of occupancy, and, in particular, to highlight the 'core' species, the opportunistic pathogens and their origins. Our findings provide an overall description of bacterial diversity in these indoor environments.
View Article and Find Full Text PDFLegionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments.
View Article and Find Full Text PDFLegionella bacteria encounter optimum growing conditions in hot water systems and cooling towers. A pilot-scale 1 unit was built in order to study the biofilm disinfection. It consisted of two identical loops, one used as a control and the other as a 'Test Loop'.
View Article and Find Full Text PDFMoulds can both degrade the materials and structures they colonise and contribute to the appearance of symptoms and diseases in the inhabitants of contaminated dwellings. Only few data have compared the levels of contamination in urban and rural environments and the results are not consistent. The aim of this study was to use a fungal contamination index, based on the detection of specific Microbial Volatile Organic Compounds (MVOC), to determine the exposure to moulds of individuals living in urban and rural dwellings.
View Article and Find Full Text PDFThe occurrence of disease amongst the occupants of "mouldy" environments has been widely described in the literature. However, the detection of such moulds in closed environments remains difficult, particularly in the event of recent (before the first deterioration) or masked contamination (behind a material). In this context, the present study aimed to determine a specific chemical fingerprint for fungal development detectable in closed environments (dwellings, office, museum.
View Article and Find Full Text PDFIndividuals with viral infection could possibly emit an infectious aerosol. The distinction between exhaled breaths of infected and healthy individuals should facilitate an understanding of the airborne transmission of infections. In this context, the present study is aimed at distinguishing healthy individuals from symptomatic ones by the study of their exhaled breath.
View Article and Find Full Text PDFIn addition to the biodegradation problems encountered in buildings, exposure of their occupants to moulds is responsible for numerous diseases: infections (invasive nosocomial aspergillosis), immediate or delayed allergies, food-borne infections and different types of irritation. In this context, the aim of our work has been to determine specific chemical tracers for fungal development on construction materials. More generally, by detecting a specific chemical fingerprint of fungal development, our objective was to propose a microbiological alert system which could control systems and/or procedures for the microbiological treatment of indoor areas.
View Article and Find Full Text PDFAerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance.
View Article and Find Full Text PDFJ Microbiol Methods
November 2005
In order to gain a clearer understanding of the level of fungal air contamination in indoor environments, we have adapted and tested a method to evaluate fungal biomass. Liquid phase chromatography (HPLC) of ergosterol, a component of the cell membrane of microscopic fungi, was employed. This method permits the detection and identification of ergosterol molecules at a concentration of 40 microg/ml (n=33, sigma=5).
View Article and Find Full Text PDFThe aerosolization process of fungal propagules of three species (Aspergillus versicolor, Penicillium melinii, and Cladosporium cladosporioides) was studied by using a newly designed and constructed aerosolization chamber. We discovered that fungal fragments are aerosolized simultaneously with spores from contaminated agar and ceiling tile surfaces. Concentration measurements with an optical particle counter showed that the fragments are released in higher numbers (up to 320 times) than the spores.
View Article and Find Full Text PDFA new method for assessing bactericidal properties of metallic materials, soiled by aerosol, was developed and applied to stainless steel in conditions close to reality. The airborne bacteria survival on different stainless steel grades and massive copper is presented here. The investigating bacterium was Enterococcus faecalis, which is a well-known contaminant strain in the indoor environments.
View Article and Find Full Text PDF