Publications by authors named "Enric Mocholi"

The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti- to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11.

View Article and Find Full Text PDF

Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown.

View Article and Find Full Text PDF

The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) is a RNA modification that can regulate post-transcriptional processes including RNA stability, translation, splicing, and nuclear export. In CD4+ lymphocytes, m6A modifications have been demonstrated to play a role in early differentiation processes. The role of m6A in CD4+ T cell activation and effector function remains incompletely understood.

View Article and Find Full Text PDF

The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti-to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11.

View Article and Find Full Text PDF

Upon antigen-specific T cell receptor (TCR) engagement, human CD4 T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation.

View Article and Find Full Text PDF

The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior.

View Article and Find Full Text PDF

Autophagy is a highly conserved process that mediates the targeting and degradation of intracellular components to lysosomes, contributing to the maintenance of cellular homeostasis and to obtaining energy, which ensures viability under stress conditions. Therefore, autophagy defects are common to different neurodegenerative disorders. Rnd3 belongs to the family of Rho GTPases, involved in the regulation of actin cytoskeleton dynamics and important in the modulation of cellular processes such as migration and proliferation.

View Article and Find Full Text PDF

Chronic inflammatory diseases are characterized by recurrent inflammatory attacks in the tissues mediated by autoreactive T cells. Identity and functional programming of CD8+ T cells at the target site of inflammation still remain elusive. One key question is whether, in these antigen-rich environments, chronic stimulation leads to CD8+ T cell exhaustion comparable to what is observed in infectious disease contexts.

View Article and Find Full Text PDF

Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF-β-mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events.

View Article and Find Full Text PDF

In response to activation, CD4 T cells upregulate autophagy. However, the functional consequences of that upregulation have not been fully elucidated. In this study, we identify autophagy as a tolerance-avoidance mechanism.

View Article and Find Full Text PDF

Infantile-onset inflammatory bowel disease (IO IBD) is an invalidating illness with an onset before 2 years of age and has a complex pathophysiology in which genetic factors are important. Homozygosity mapping and whole-exome sequencing in an IO IBD patient and subsequent sequencing of the candidate gene in 12 additional IO IBD patients revealed two patients with two mutated ankyrin repeat and zinc-finger domain-containing 1 () alleles (homozygous R585Q mutation and compound heterozygous E152K and V32_Q87del mutations, respectively) and two patients with one mutated allele. Although the function of ANKZF1 in mammals had not been previously evaluated, we show that ANKZF1 has an indispensable role in the mitochondrial response to cellular stress.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA), a selective form of degradation of cytosolic proteins in lysosomes, contributes to maintenance of proteostasis and to the cellular adaptation to stress. CMA substrates are delivered by a cytosolic chaperone to the lysosomal surface, where, upon unfolding, they are internalized through a membrane translocation complex. The molecular components that participate in CMA substrate targeting and translocation are well characterized, but those involved in CMA regulation remain mostly unknown.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) targets soluble proteins for lysosomal degradation. Here we found that CMA was activated in T cells in response to engagement of the T cell antigen receptor (TCR), which induced expression of the CMA-related lysosomal receptor LAMP-2A. In activated T cells, CMA targeted the ubiquitin ligase Itch and the calcineurin inhibitor RCAN1 for degradation to maintain activation-induced responses.

View Article and Find Full Text PDF

The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression.

View Article and Find Full Text PDF

RhoE/Rnd3 is an atypical member of the Rho family of small GTPases. In addition to regulating actin cytoskeleton dynamics, RhoE is involved in the regulation of cell proliferation, survival, and metastasis. We examined RhoE expression levels during cell cycle and investigated mechanisms controlling them.

View Article and Find Full Text PDF

Cancer cells express antigens that elicit T cell-mediated responses, but these responses are limited during malignant progression by the development of immunosuppressive mechanisms in the tumor microenvironment that drive immune escape. T-cell hyporesponsiveness can be caused by clonal anergy or adaptive tolerance, but the pathophysiological roles of these processes in specific tumor contexts has yet to be understood. In CD4+ T cells, clonal anergy occurs when the T-cell receptor is activated in the absence of a costimulatory signal.

View Article and Find Full Text PDF

Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation.

View Article and Find Full Text PDF

Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation.

View Article and Find Full Text PDF