Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear.
View Article and Find Full Text PDFThe adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord ependymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also immature as well as mature cell states.
View Article and Find Full Text PDFCurrent methods for epigenomic profiling are limited in their ability to obtain genome-wide information with spatial resolution. We introduce spatial ATAC, a method that integrates transposase-accessible chromatin profiling in tissue sections with barcoded solid-phase capture to perform spatially resolved epigenomics. We show that spatial ATAC enables the discovery of the regulatory programs underlying spatial gene expression during mouse organogenesis, lineage differentiation and in human pathology.
View Article and Find Full Text PDFSpinal cord ependymal cells display neural stem cell properties in vitro and generate scar-forming astrocytes and remyelinating oligodendrocytes after injury. We report that ependymal cells are functionally heterogeneous and identify a small subpopulation (8% of ependymal cells and 0.1% of all cells in a spinal cord segment), which we denote ependymal A (EpA) cells, that accounts for the in vitro stem cell potential in the adult spinal cord.
View Article and Find Full Text PDFMature oligodendrocytes (MOLs) show transcriptional heterogeneity, the functional consequences of which are unclear. MOL heterogeneity might correlate with the local environment or their interactions with different neuron types. Here, we show that distinct MOL populations have spatial preference in the mammalian central nervous system (CNS).
View Article and Find Full Text PDFInjuries to the central nervous system (CNS) are inefficiently repaired. Resident neural stem cells manifest a limited contribution to cell replacement. We have uncovered a latent potential in neural stem cells to replace large numbers of lost oligodendrocytes in the injured mouse spinal cord.
View Article and Find Full Text PDFParenchymal astrocytes have emerged as a potential reservoir for new neurons in non-neurogenic brain regions. It is currently unclear how astrocyte neurogenesis is controlled molecularly. Here we show that Notch signaling-deficient astrocytes can generate new neurons after injury.
View Article and Find Full Text PDFRegulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs.
View Article and Find Full Text PDFThe function of somatic stem cells declines with age. Understanding the molecular underpinnings of this decline is key to counteract age-related disease. Here, we report a dramatic drop in the neural stem cells (NSCs) number in the aging murine brain.
View Article and Find Full Text PDFWhether post-transcriptional regulation of gene expression controls differentiation of stem cells for tissue renewal remains unknown. Quiescent stem cells exhibit a low level of protein synthesis, which is key to maintaining the pool of fully functional stem cells, not only in the brain but also in the bone marrow and hair follicles. Neurons also maintain a subset of messenger RNAs in a translationally silent state, which react 'on demand' to intracellular and extracellular signals.
View Article and Find Full Text PDFAdult somatic stem cells are generally defined as cells with the ability to differentiate into multiple different lineages and to self-renew during long periods of time. These features were long presumed to be represented in one single tissue-specific stem cell. Recent development of single-cell technologies reveals the existence of diversity in fate and activation state of somatic stem cells within the blood, skin and intestinal compartments [1] but also in the adult brain.
View Article and Find Full Text PDFWhether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits.
View Article and Find Full Text PDFHeterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs.
View Article and Find Full Text PDFNeuroinflammation is increasingly recognized as a hallmark of neurodegeneration. Activated central nervous system-resident microglia and infiltrating immune cells contribute to the degeneration of dopaminergic neurons (DNs). However, how the inflammatory process leads to neuron loss and whether blocking this response would be beneficial to disease progression remains largely unknown.
View Article and Find Full Text PDFThe role of CD95 (Fas/Apo1) in cancer has been a matter of debate for over 30 years. First discovered as an apoptosis-inducing molecule, CD95 soon emerged as a potential anticancer therapy. Yet accumulating evidence indicates a profound role for CD95 in alternative nonapoptotic signaling pathways that increase tumorigenesis.
View Article and Find Full Text PDF