Efficient and affordable electrocatalysts are fundamental for the sustainable production of hydrogen from water electrolysis. Here, an approach for the rapid production of laser-induced vertical graphene nanosheets (LIVGNs) through the exfoliation of the graphite foil under laser irradiation is presented. The density of the formed LIVGNs is ∼3 per 100 μm.
View Article and Find Full Text PDFResearch for the development of noble metal-free electrodes for hydrogen evolution has blossomed in recent years. Transition metal carbides compounds, such as WC, have been considered as a promising alternative to replace Pt-family metals as electrocatalysts towards hydrogen evolution reaction (HER). Moreover, hybridization of TMCs with graphene nanostructures has emerged as a reliable strategy for the preparation of compounds with high surface to volume ratio and abundant active sites.
View Article and Find Full Text PDFThe processing of vertical graphene nanowalls (VGNWs) via laser irradiation is proposed as a means to modulate their physicochemical properties. The effects of the number of applied pulses and fluence of each pulse are examined. Raman spectroscopy studies the effect of irradiation on the chemical structure of the VGNWs.
View Article and Find Full Text PDFIn recent years, vertical graphene nanowalls (VGNWs) have gained significant attention due to their exceptional properties, including their high specific surface area, excellent electrical conductivity, scalability, and compatibility with transition metal compounds. These attributes position VGNWs as a compelling choice for various applications, such as energy storage, catalysis, and sensing, driving interest in their integration into next-generation commercial graphene-based devices. Among the diverse graphene synthesis methods, plasma-enhanced chemical vapor deposition (PECVD) stands out for its ability to create large-scale graphene films and VGNWs on diverse substrates.
View Article and Find Full Text PDFOrganizing a post-fossil fuel economy requires the development of sustainable energy carriers. Hydrogen is expected to play a significant role as an alternative fuel as it is among the most efficient energy carriers. Therefore, nowadays, the demand for hydrogen production is increasing.
View Article and Find Full Text PDFMajor research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed. The laser processing technology is well extended at the industrial sector for the versatile and high throughput modification of a wide range of materials.
View Article and Find Full Text PDFThe combination of carbon nanotubes with transition metal oxides can exhibit complementary charge storage properties for use as electrode materials for next generation energy storage devices. One of the biggest challenges so far is to synthesize homogeneous oxide coatings on carbon nanotube structures preserving their integrity. Here we present the formation of conformal coatings of FeO on vertically aligned carbon nanotubes obtained by atomic layer deposition.
View Article and Find Full Text PDFGraphene nano-walls (GNWs) are promising materials that can be used as an electrode in electrochemical devices. We have grown GNWs by inductively-coupled plasma-enhanced chemical vapor deposition on stainless steel (AISI304) substrate. In order to enhance the super-capacitive properties of the electrodes, we have deposited a thin layer of MnO₂ by electrodeposition method.
View Article and Find Full Text PDF