Spallation residues and fission fragments from 1A GeV 238U projectiles irradiating a liquid hydrogen target were investigated by using the fragment separator at GSI for magnetic selection of reaction products including ray-tracing, energy-loss and time-of-flight techniques. The longitudinal-momentum spectra of identified fragments were analyzed, and evaporation residues and fission fragments could be separated. For 1385 nuclides, production cross sections down to values of 10 microb with a mean accuracy of 15%, velocities in the uranium rest frame and kinetic energies were determined.
View Article and Find Full Text PDFA new experimental approach is introduced to investigate the relaxation of the nuclear deformation degrees of freedom. Highly excited fissioning systems with compact shapes and low angular momenta are produced in peripheral relativistic heavy-ion collisions. Both fission fragments are identified in atomic number.
View Article and Find Full Text PDFPrecise momentum distributions of identified projectile fragments, formed in the reactions 238U+Pb and 238U+Ti at 1A GeV, are measured with a high-resolution magnetic spectrometer. With increasing mass loss, the velocities first decrease as expected from previously established systematics, then level off, and finally increase again. Light fragments are on the average even faster than the projectiles.
View Article and Find Full Text PDFSpallation residues produced in 1 GeV per nucleon 208Pb on proton reactions have been studied using the Fragment Separator facility at GSI. Isotopic production cross sections of elements from 61Pm to 82Pb have been measured down to 0.1 mb with a high accuracy.
View Article and Find Full Text PDF