Publications by authors named "Enquye W Negash"

Reconstructing habitat types available to hominins and inferring how the paleo-landscape changed through time are critical steps in testing hypotheses about the selective pressures that drove the emergence of bipedalism, tool use, a change in diet, and progressive encephalization. Change in the amount and distribution of woody vegetation has been suggested as one of the important factors that shaped early hominin evolution. Previous models for reconstructing woody cover at eastern African hominin fossil sites used global-scale modern soil comparative datasets.

View Article and Find Full Text PDF

The diet of fossil herbivores inferred from enamel stable carbon isotopes is often used to make paleoenvironmental reconstructions. While many studies have focused on using environmental indicator taxa to make paleoenvironmental reconstructions, community-based approaches are considered to provide a more complete picture of paleolandscapes. These studies assume that the diet and relative abundance of herbivores are related to the areal extent of different vegetation types on the landscape.

View Article and Find Full Text PDF

New approaches to the study of early hominin diets have refreshed interest in how and when our diets diverged from those of other African apes. A trend toward significant consumption of C foods in hominins after this divergence has emerged as a landmark event in human evolution, with direct evidence provided by stable carbon isotope studies. In this study, we report on detailed carbon isotopic evidence from the hominin fossil record of the Shungura and Usno Formations, Lower Omo Valley, Ethiopia, which elucidates the patterns of C dietary utilization in the robust hominin The results show that the most important shift toward C foods occurred at ∼2.

View Article and Find Full Text PDF

Diet provides critical information about the ecology and environment of herbivores. Hence, understanding the dietary strategies of fossil herbivores and the associated temporal changes is one aspect of inferring paleoenvironmental conditions. Here, we present carbon isotope data from more than 1,050 fossil teeth that record the dietary patterns of nine herbivore families in the late Pliocene and early Pleistocene (3.

View Article and Find Full Text PDF

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H.

View Article and Find Full Text PDF

Preservation of the stable carbon isotopic composition of fossil tooth enamel enables us to estimate the relative proportion of C3 versus C4 vegetation in an animal's diet, which, combined with analysis of faunal abundance, may provide complementary methods of paleoenvironmental reconstruction. To this end, we analyzed stable carbon isotopic composition (δ(13)C values) of tooth enamel from four bovid tribes (Tragelaphini, Aepycerotini, Reduncini, and Alcelaphini) derived from six members of the Shungura Formation (Members B, C, D, F, G, and L; ages from ca. 2.

View Article and Find Full Text PDF